ENVIRONMENTAL RESEARCH CLIMATE

ACCEPTED MANUSCRIPT • OPEN ACCESS

Ultrafast Arctic amplification and its governing mechanisms

To cite this article before publication: Tyler P Janoski et al 2023 Environ. Res.: Climate in press https://doi.org/10.1088/2752-5295/ace211

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2023 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1 2		
3 4 5	1	Ultrafast Arctic Amplification and Its Governing Mechanisms
5 6 7		
8	2	
9 10 11	3 4	Tyler P. Janoski ^{1,2} , Michael Previdi ² , Gabriel Chiodo ³ , Karen L. Smith ^{2,4} and Lorenzo M. Polvani ^{1,2,5}
12 13	5	¹ Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
14 15	6	² Lamont-Doherty Earth Observatory, Palisades, NY, USA
16 17	7	³ ETH Zürich, Zürich, Switzerland
18 19 20	8 9	⁴ Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
21 22 23	10 11	⁵ Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
24 25 26	12	Abstract
27 28 29 30 31 32 33 34 35 36 37 38 39 40	13	Arctic amplification (AA), defined as the enhanced warming of the Arctic compared to the
	14	global average, is a robust feature of historical observations and simulations of future climate.
	15	Despite many studies investigating AA mechanisms, their relative importance remains contested.
	16	In this study, we examine the different timescales of these mechanisms to improve our
	17	understanding of AA's fundamental causes. We use the Community Earth System Model v1,
	18	Large Ensemble configuration (CESM-LE), to generate large ensembles of 2-year simulations
	19	subjected to an instantaneous quadrupling of CO ₂ . We show that AA emerges almost
	20	immediately (within days) following CO ₂ increase and before any significant loss of Arctic sea
41 42	21	ice has occurred. Through a detailed energy budget analysis of the atmospheric column, we
43 44	22	determine the time-varying contributions of AA mechanisms over the simulation period.
45 46	23	Additionally, we examine the dependence of these mechanisms on the season of CO_2
47 48	24	quadrupling.
49 50	25	We find that the surface heat uptake resulting from the different latent heat flux anomalies
51	26	between the Arctic and global average driven by the CO ₂ forcing, is the most important AA
52 53	27	contributor on short (< 1 month) timescales when CO ₂ is increased in January, followed by the
54 55	28	lapse rate feedback. The latent heat flux anomaly remains the dominant AA mechanism when
56 57 58 59 60	29	CO_2 is increased in July and is joined by the surface albedo feedback, although AA takes longer

to develop. Other feedbacks and energy transports become relevant on longer (> 1 month)
timescales. Our results confirm that AA is an inherently fast atmospheric response to radiative
forcing and reveal a new AA mechanism.

1. Introduction

Arctic amplification (AA), or the enhanced surface warming of the Arctic relative to the global mean, is a ubiquitous feature of anthropogenic climate change. First predicted by Arrhenius in 1896 as a response to increasing CO₂ (Arrhenius, 1896), AA has since consistently appeared in climate model simulations (e.g., Manabe & Stouffer, 1980; Hwang et al., 2011; Pithan & Mauritsen, 2014) and observations (e.g., Serreze et al., 2009; Cohen et al., 2014; Wang et al., 2016). The local and global importance of AA cannot be overstated. The Arctic is home to ~4 million people, including indigenous peoples who have lived there for 20,000 years (National Snow & Ice Data Center, 2020). Amplified Arctic warming threatens these peoples' ways of life while simultaneously endangering the surrounding Arctic ecosystems (Meltofte et al., 2013; Moon et al., 2021). Impacts of AA are not limited to the Arctic; a warmer Arctic may lead to the release of methane, a potent greenhouse gas (GHG), from permafrost (Zubrzycki et al., 2014) and may influence extreme weather in the midlatitudes (Francis & Vavrus, 2012; Cohen et al., 2014, Smith et al., 2022). There may, however, be some benefits to global shipping and agriculture from Arctic warming (Ho, 2010; Altdorff et al., 2021).

Despite AA's ubiquity, the question of the mechanisms to which AA owes its existence remains open, limiting our ability to understand and accurately project future Arctic climate. Some studies have emphasized the role of local feedbacks over the Arctic, which may enhance or diminish an initial temperature response; these include temperature feedbacks (Winton, 2006; Pithan & Mauritsen, 2014; Stuecker et al., 2018), the surface albedo feedback (Holland & Bitz, 2003; Screen & Simmonds 2010; Dai, 2021), and cloud feedbacks (Vavrus et al., 2011; Cao et al., 2017; Jenkins & Dai, 2022). Others attribute AA mainly to changes in heat transport into the Arctic by the atmosphere, specifically through enhanced moisture transport (Lee, 2014; Merlis & Henry, 2018; Graversen & Langen, 2019; Russotto & Biasutti, 2020) and the ocean (Bitz et al., 2006; Singh et al., 2017; van der Linden et al., 2019). This issue is further complicated by the coupling between different local feedbacks or energy transports, which may obscure the effect of

individual contributions to AA (Hwang et al., 2011; Graversen et al., 2014; Feldl et al., 2017;
Chung et al., 2021; Previdi et al., 2021). For example, although the lapse rate feedback, a type of
temperature feedback, is often considered in isolation, it is strongly linked to sea ice loss,
atmospheric heat transport, and surface temperature response (Feldl et al., 2020; Boeke et al.,
2021).

It is important to note that these proposed AA mechanisms operate on different timescales, mainly because of the different rates with which climate system components respond to radiative forcing. However, most previous studies of AA do not discriminate between these different timescales and focus on the long-term (e.g., multi-decadal) or equilibrium response to an imposed forcing. An exception to this is the recent study of Previdi et al. (2020), which focused specifically on the different timescales of AA. In that study, a collection of models from the Coupled Model Intercomparison Project phase 5 (CMIP5) subjected to an instantaneous quadrupling of CO₂ relative to preindustrial levels was analyzed, and the contributions of different AA mechanisms were quantified. It was shown that the relative importance of various mechanisms depends on the timescale; for example, the lapse rate feedback is the main contributor to AA across CMIP5 models in the first three months following the CO₂quadrupling, but in the last 30 years of the simulations (representing the quasi-equilibrium response), the surface albedo feedback dominates (Previdi et al., 2020). Thus, to elucidate the relative contributions of different mechanisms to AA, one must pay careful attention to the timescale being considered. The main conclusion of Previdi et al. (2020) is that AA is inherently a rapid response to radiative forcing, fundamentally owing its existence to fast atmospheric processes.

Although an important first step, the study by Previdi et al. (2020) was hampered by several factors. First, only 21 CMIP5 models provided the variables necessary to complete an energy budget analysis. This relatively small sample size made it difficult to robustly characterize the evolution of AA, particularly on the short timescales of interest where internal variability (especially in the Arctic) is large. Second, CMIP5 output was only available as monthly means. This precluded any assessment of the role of sub-monthly processes in AA. Given the rapid timescale associated with AA, the coarse time resolution of the data and the lack of multiple realizations posed a key limitation to their conclusions based on CMIP5 data. Finally, all

2		
3 4	89	simulations analyzed in that study had CO2 quadrupling on January 1st, leaving open the question
5	90	of how the time evolution of AA would differ if CO_2 were quadrupled in different seasons.
6 7	91	Bintanja & Krikken (2016) previously explored the impact of the season of CO ₂ forcing on
8 9	92	Arctic warming, but at timescales beyond the initial response. The timing of CO ₂ increase is
10 11	93	particularly important in the Arctic, which cycles through 6-month polar days and nights,
12 13	94	experiencing a very large seasonal cycle.
14 15	95	Here, we seek to overcome these limitations and build upon the work of Previdi et al. (2020)
16 17	96	by analyzing the development of AA using high-frequency (daily) output from climate model
18	97	simulations subjected to an instantaneous quadrupling of CO ₂ . To address the small signal-to-
20	98	noise ratio of the Arctic (Screen et al., 2014; Swart et al., 2015; England et al., 2019), we
21 22	99	generate two large ensembles of simulations (50-100 members) in which CO ₂ is increased at
23 24	100	different times during the year (either January or July). The questions we seek to answer are as
25	101	follows:
26 27	102	• How quickly does AA develop in an ensemble of model simulations subjected to an
28 29	103	instantaneous CO ₂ increase?
30 31	104	• What mechanisms best explain the initial appearance and the subsequent evolution of
32	105	AA?
33 34	106	• How does the time of year in which atmospheric CO ₂ is quadrupled affect AA
35 36	107	development?
37 38 39	108	2. Methods
40 41	109	2.1 Model Description
42	105	
43 44	110	In this study, we used the Community Earth System Model, Large Ensemble configuration
45 46	111	(CESM-LE). CESM-LE is a fully coupled global climate model (GCM) based on version 1.1.1
47 48	112	of the Community Earth System Model (CESM), a model included in CMIP5, and has active
49	113	atmosphere, land, ocean, and sea ice components. The atmosphere model in CESM-LE is the
50 51	114	Community Atmosphere Model version 5 (CAM5), with a horizontal resolution of ~1°. For more
52 53	115	detailed information about the CESM-LE configuration, see Kay et al. (2015); for CAM5, see
54 55	116	Hurrell et al. (2013).
56	7	
57 58		

Page 5 of 39

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
11	
14	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
37	
34	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	

58 59 60 117 CESM-LE is well-suited for studies of Arctic climate because of its ability to simulate the 118 modern Arctic sea ice state (Jahn et al., 2016) and its outperformance of other CMIP5 models in 119 capturing the internal variability of Arctic sea ice (England et al., 2019). Consequently, CESM-120 LE has a strong precedent of use in Arctic climate studies (e.g., Jahn et al., 2016; Labe et al., 121 2018; Yang & Magnusdottir, 2018).

122 2.2 Experiment Design

We generated large ensembles of simulations with CESM-LE, with individual ensemble 123 members differing only in their initial conditions. The initial conditions were chosen randomly 124 from an existing ~2200-year-long CESM-LE control simulation with fixed preindustrial forcing 125 available on National Center for Atmospheric Research (NCAR) machines (Kay & Deser, 2016). 126 This initialization approach was chosen to better sample climate state variability in the days 127 following CO₂ increase by ensuring that ensemble realizations are sufficiently different, as 128 opposed to the method used in Kay et al. (2015), in which small round-off level perturbations are 129 introduced to initial conditions. The existing control simulation had restart files available every 130 ~5 years. Our ensembles consist of paired 2-year-long CESM-LE runs. The first run in each pair 131 has fixed preindustrial forcing (piControl), while the second is subjected to an instantaneous 132 CO_2 -quadrupling relative to preindustrial levels (4× CO_2). 133

To investigate the impact of the time of year of $4 \times CO_2$ on AA, we created two ensembles, one containing members initialized on January 1st and the other with members initialized on July 136 1st of the same model year. Because restart files from the existing CESM-LE run were only available for Jan 1st, we generated new restart files for July from our January-initialized piControl simulations. All model output was saved as daily averages.

For the sake of readability, we henceforth refer to the experiment in which CO₂ is quadrupled in January as Jan4×CO₂ and in July as Jul4×CO₂. Jan4×CO₂ and Jul4×CO₂ have 100 and 50 ensemble members, respectively. These ensemble sizes were determined carefully considering the seasonality of Arctic internal variability and computational constraints, along with the suggestion of a 100-member minimum in the Polar Amplification Model Intercomparison Project (Smith et al., 2019). Given the large internal variability in the Arctic region, we ran multiple members to ensure that a forced AA signal could be separated from the variability; welater show results with different ensemble sizes for context.

147 2.3 Energy Budget Analysis

148 2.3.1 FRAMEWORK

We compare the global average and Arctic energy budgets to understand how the CO₂
radiative forcing, climate feedbacks, and energy transports contribute to AA. We define the
Arctic as the region from 70°N - 90°N, with approximately the same fractional land area as the
global average (~0.29). Because of the fast timescales in our analysis, we prefer not to use the
ratio of Arctic to global warming to avoid dividing by near-zero global temperature changes.
Therefore, we generally define AA and warming contributions to AA as the difference between
the Arctic and global averages.

We adopt an energy budget framework similar to that of Pithan & Mauritsen (2014), Goosse et al. (2018), Zhang et al. (2018), and Previdi et al. (2020). We consider an atmospheric column that extends from the top of the atmosphere (TOA) to the surface, with *R* representing the net downward radiative flux at the TOA. If we introduce a TOA radiative imbalance by subjecting the column to some radiative forcing ΔF , we can relate the imbalance and forcing as follows:

$$\Delta R = \Delta F + \lambda \Delta T_s + \Delta A H T + \Delta S H U \tag{1}$$

where λ is the local climate feedback parameter, T_s is the surface air temperature, AHT is the vertically integrated convergence of the atmospheric heat transport, and SHU is the surface heat uptake, defined as positive upwards (i.e., into the column). Δ represents the difference between the piControl and 4×CO₂ simulations. Because of the short timescales of interest, we take ΔF to be the instantaneous radiative forcing at the TOA from $4 \times CO_2$. We compute this radiative forcing using the Parallel Offline Radiative Transfer (PORT) model with CESM (Conley et al., 2013). Responses to the instantaneous CO₂ forcing that affect ΔR and ΔSHU are generally referred to as "feedbacks" for ease of discussion. However, in Section 4, we consider which of these responses may be more appropriately regarded as "rapid adjustments."

We decompose the net climate feedback parameter λ as follows (Pithan & Mauritsen, 2014;
Zhang et al., 2018; Goosse et al., 2018):

$$\lambda = \lambda_o + \sum_x \lambda_x$$

174 where λ_o is the Planck feedback, and λ_x represents feedbacks due to changes in water vapor, 175 clouds, the atmospheric lapse rate (LR), and surface albedo. Following past studies (Pithan & 176 Mauritsen, 2014; Goosse et al., 2018), we further decompose the Planck feedback into a global 177 mean value $\overline{\lambda_o}$ and local deviation from the global mean, λ_o' :

$$\lambda_{\rm o} = \lambda_{\rm o} + \lambda_{\rm o}'. \tag{3}$$

(2)

The atmospheric heat transport into the Arctic is computed directly from model covariancefields. The meridional flux of moist static energy into the Arctic can be written as follows:

$$AHT = \frac{c}{2\pi A} \int_{0}^{2\pi} \int_{0}^{p_{s}} \frac{v(c_{p}T + gz + L_{v}q)dxdp}{g}$$
(4)

182 with *A* being the area of the Arctic, *C* the circumference of the southern latitudinal boundary of 183 the Arctic, p_s the surface pressure, *v* the meridional component of the wind, c_p the specific heat 184 of dry air, *T* the air temperature, *g* the gravitational constant, L_v the latent heat of vaporization of 185 water, and *q* the specific humidity (Cardinale et al., 2021). The global average atmospheric heat 186 transport convergence is zero, by definition.

Because covariance terms involving the zonal component of the wind were not available, we calculate the AHT convergence as a residual when estimating warming contributions separately for land and ocean (see section 5):

$$AHT = \frac{dE}{dt} - SHU - R \tag{5}$$

where $\frac{dE}{dt}$ is the time rate of change in atmospheric column energy, *SHU* is the surface heat uptake, and *R* is the net radiative flux at the TOA, as in Eq. 1. The AHT calculated as a residual closely matches the direct calculation (not shown).

Page 8 of 39

The surface heat uptake is equal to the net surface heat flux from the model. It can be decomposed into radiative and non-radiative components; the former includes contributions from surface radiative forcing and feedbacks, and the latter contains sensible and latent heat fluxes:

$$\Delta SHU = \Delta F_{sfc} = \Delta F_{CO_2} + \Delta F_{LH} + \Delta F_{SH} + \Delta T_s \sum_{x} \lambda_{s,x}$$
(6)

 F_{sfc} is the net surface heat flux, ΔF_{CO_2} is the instantaneous 4×CO₂ radiative forcing from CESM-PORT at the surface, F_{LH} is the latent heat flux, F_{SH} is the sensible heat flux, and $\lambda_{s,x}$ represents feedbacks at the surface from changes in temperature, water vapor, clouds, and surface albedo. The radiative feedbacks at the surface are mostly analogous to their TOA counterparts in that they quantify radiative perturbations from changes in certain fields at the surface instead of the TOA. As in Eq. 1, SHU and all of its components are defined such that positive values indicate the flow of energy from the surface into the atmospheric column. This sign convention at the surface is opposite to that of Pithan & Mauritsen (2014) and Laîné et al. (2016). We offer two reasons for this difference. First, SHU should be positive and, therefore, contribute to Arctic warming in the fall and winter, when the ocean acts as a heat source to the atmosphere (Screen & Simmonds, 2010; Bintanja & van der Linden, 2013; Boeke & Taylor, 2018; Chung et al., 2021; Dai et al., 2021). Second, on the longer, annual timescales analyzed by Pithan & Mauritsen (2014) and Laîné et al. (2016), energy added to the surface is ultimately realized as surface warming; this is not necessarily true on the fast timescales examined in this study, for which we must account for the storage of heat in the surface.

213 2.3.2 FEEDBACK CALCULATIONS

We use the radiative kernel technique to quantify the radiative perturbations at the TOA and surface from climate feedbacks (Soden et al., 2008, Shell et al., 2008). We employ the CAM5 kernels documented in Pendergrass et al. (2018), which have the same horizontal resolution and underlying radiation code as our CESM-LE simulations and were created with CESM 1.1.2 fields (e.g., temperature, moisture, and clouds). The kernels were only available as monthly averages, so they were linearly interpolated with periodic boundary conditions to a daily resolution to match the model output. Height-dependent kernels and model output were linearly

2		
3 1	221	regridded from the native hybrid-sigma coordinates to standard pressure levels for feedback
5	222	calculations.
3	223	The TOA temperature feedback was separated into Planck and LR components. For the
) 10	224	Planck feedback, a vertically uniform temperature change equal to the surface air temperature
11 12	225	change was assumed. The LR feedback was calculated as the departure from this vertically
13	226	uniform temperature change. We used the change in the natural logarithm of the specific
14 15	227	humidity to compute the radiative perturbation due to water vapor feedback (Soden et al., 2008).
16 17	228	Tropospheric temperature and water vapor feedbacks are vertically integrated from the surface to
18	229	the model-defined tropopause. Stratospheric feedbacks are quantified similarly by integrating
19 20 21	230	from the tropopause to the TOA.
22 23	231	The temperature feedback at the surface was decomposed into surface warming and
24 25	232	atmospheric warming feedbacks, corresponding to changes in outgoing longwave radiation from
26	233	the surface and incoming longwave radiation from the atmosphere received by the surface,
27 28 29	234	respectively (Pithan & Mauritsen, 2014).

The cloud feedback (ΔR_{cloud}) is determined using the "adjustment method" developed by Soden et al. (2008). In this method, the change in cloud radiative effect (ΔCRE) is adjusted to remove the effects of cloud masking, i.e.:

$$\Delta R_{cloud} = \Delta CRE - (\Delta F - \Delta F^o) - \sum_{x} (\Delta R_x - \Delta R_x^o)$$
⁽⁷⁾

where ΔF and ΔR_x represent the all-sky radiative perturbations at the TOA or surface due to climate forcing and feedbacks, respectively, and the superscript ^{*o*} indicates the clear-sky perturbations (e.g., see Zhang et al., 2018).

We express forcing, feedback, and transport terms as warming contributions to the global or Arctic average surface air temperature response, as was done by Crook et al. (2011), Feldl & Roe (2013), Pithan & Mauritsen (2014), Goosse et al. (2018), and Previdi et al. (2020). This is achieved by normalizing each term (in W m⁻²) by the magnitude of the time-averaged ensemblemean global Planck feedback (~3.2 W m⁻² K⁻¹).

247 3. Rapid AA after 4×CO₂

We begin by observing the evolution of the global and Arctic average SAT response in $Jan4 \times CO_2$ (Fig. 1a). AA rapidly develops as the ensemble mean Arctic SAT response quickly diverges from the global average within days after $4 \times CO_2$. In the first week, the ensemble mean Arctic warming is nearly double that of the global average (0.75 K vs. 0.34 K); this difference grows when the first three months are considered (1.69 K vs. 0.68 K), comparable to the Arctic-to-global warming ratio reported in Previdi et al. (2020) over the same timescale. In Jul4×CO₂ (Fig. 1b), it takes longer for the Arctic and global average temperature responses to diverge, corresponding to the well-observed seasonally reduced AA in boreal summer (Lâiné et al., 2016). Even with the slower start in Jul4× CO_2 , the Arctic warms considerably more than the global average in the first three months (1.52 K vs. 0.82 K). The pronounced seasonal variability in Arctic SAT response is the most prominent feature in the later periods of the simulations.

1 2		
3 4 5 6 7	264 265	The line is opaque where the difference is significantly different from zero at the 95% confidence level.
	200 267	To determine statistical significance, we perform a 1-sample Student's t-test on the time
8 9	268	series of AA, shown in Fig. 1c & 1d. In the Jan4×CO ₂ , AA is statistically significant from day
10	269	one and remains significant for almost the entire 2-year period, owing to the large ensemble size.
12	270	In Jul4×CO ₂ , AA becomes consistently significant after 25 days and remains so, aside from 2
13 14	271	weeks in the first March. AA, therefore, can be detected well before the first three months
15 16	272	following CO ₂ -quadrupling seen in Previdi et al. (2020), given sufficient ensemble size and
17	273	temporal resolution. Until now, these ultrafast timescales of AA have been relatively unexplored
18 19	274	in the existing body of AA research.
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	275	We note that the general features of the SAT and AA responses seen in Fig. 1 are robust to
	276	the number of ensemble members considered, although, not surprisingly, the responses are
	277	noisier and less statistically significant for smaller ensemble sizes (Fig. S1 & S2). The
	278	considerable noise in the Arctic SAT response (red lines) in Fig. S1a, S1c, & S1e and of Fig. S2a
	279	& S2c reflect the large internal variability present in the Arctic and the need for sufficiently large
	280	ensemble sizes in studies of Arctic climate.
	281	Given the prominent role sea ice loss is thought to play in AA, we next explore how sea ice
	282	area (SIA) evolves over the same timescales. Sea ice loss is negligible in the first month of
	283	Jan4×CO ₂ and remains relatively small through the rest of the winter and early spring (Fig. 2a,
	284	c), suggesting that sea ice loss plays a minimal role in AA on these short timescales. The decline
	285	in SIA accelerates through the late spring and summer, culminating in a ~30% decrease by the
39 40	286	first September in Jan4×CO ₂ . The minimum in SIA precedes the seasonal AA maximum in
41	287	Jan4×CO ₂ by 1-2 months (Fig. 1c), implying a large role for sea ice loss in governing the
42 43	288	seasonality of AA through its effects on ocean-atmosphere heat exchange (see additional
44 45	289	discussion in Section 4.2).
46 47 48 49 50 51 52 53 54 55		
56		

Fig. 2 (a,c) The daily average (a) absolute and (c) percent change in Arctic sea ice area (SIA) for the first two years of Jan4×CO₂. Solid lines indicate the ensemble mean and the shading ±1 standard deviation. (b, d) As in (a, c), but for Jul4×CO₂. Sea ice loss exhibits a considerably different temporal structure in Jul4×CO₂ (Fig. 2b, d). We

Sea ice loss exhibits a considerably different temporal structure in Jul4×CO₂ (Fig. 2b, d). We see a rapid decline in SIA over the first two months (~9% decrease by September), which then plateaus and slightly reverses through the following fall, winter, and spring. Interestingly, despite the immediate SIA reduction in Jul4×CO₂, AA is larger and more robust in the first month of Jan4×CO₂ with negligible sea ice loss. We discuss spatial changes in sea ice and their relationship with the surface air temperature response in Section 5.

- 300 4. Mechanism contributions to AA
- *4.1 Radiative Forcing*

Having shown that AA becomes statistically significant almost immediately in Jan4×CO₂ and in the first month of Jul4×CO₂, we now quantify the time-varying warming contributions of different AA mechanisms. A natural place to start is the fundamental driver of the climate response, the radiative forcing (RF) associated with 4×CO₂ (Fig. 3). The magnitude of the 4×CO₂ RF at the TOA (Fig. 3a) is mainly determined by two factors: the climatological surface temperature and the temperature lapse rate. The climatological surface temperature governs the

 RF via the Stefan-Boltzmann law: warmer surfaces produce more outgoing longwave radiation (OLR) for CO₂ to absorb and reemit into the atmospheric column (Raval & Ramanathan, 1989; Huang et al., 2016A). The lapse rate determines the temperature of the atmospheric laver from which OLR is effectively emitted to space; increased CO₂ can be thought of as increasing the height of this layer, or, equivalently, decreasing the effective emission temperature, making the lapse rate a pivotal factor in determining the TOA RF (Raval & Ramanathan, 1989; Huang et al., 2016A). The higher climatological surface temperature and larger temperature difference between the surface and upper troposphere in the global mean than in the Arctic yield a larger global mean TOA RF than Arctic mean TOA RF. Thus, when viewed from a TOA perspective, the CO₂ RF opposes AA.

Fig. 3. The 7-day rolling average Arctic, global, and Arctic-global $4 \times CO_2$ instantaneous radiative forcing from CESM-PORT at the (a) TOA and (b) surface, expressed as warming contributions to the global and Arctic average SAT responses. Positive values indicate energy entering the atmospheric column from the TOA or surface. See Section 2.3.2 for details on the conversion from radiative forcing (Wm⁻²) to warming contributions (K).

A different story emerges when we consider the $4 \times CO_2$ RF at the surface (Fig. 3b), which is strongly affected by the overlap in the spectral bands of CO_2 and water vapor (Kiehl & Ramanathan, 1982; Huang et al., 2017; Previdi et al., 2021). The forcing is consistently negative for both the Arctic and global average, indicating that the surface is gaining energy from the atmosphere. From October to April, the Arctic surface intercepts slightly more energy than the global average, opposing AA; this reverses in the summer.

Although we have treated the CO_2 RF as a standalone AA mechanism in the spirit of separating the forcing from the climate system response, we remind the reader that the surface CO_2 RF is incorporated into the surface heat uptake term (see Eq. 6). The contribution from the surface CO_2 RF to AA is small compared to the other terms in the surface energy budget that are discussed in section 4.3.

4.2 Atmospheric Column Energy Budget

Having examined the CO₂ forcing, we move on to feedbacks and energy transports from an atmospheric column perspective. We start by focusing exclusively on the first month following 4×CO₂ (Fig. 4). In Jan4×CO₂ (Fig. 4a), two mechanisms stand out as main AA contributors: the surface heat uptake (SHU), to be discussed in more detail later, and the lapse rate feedback. It is worth mentioning how the lapse rate feedback is thought to operate. Globally, the rate of temperature decrease with height in the troposphere is expected to decrease with increasing CO₂ - associated with enhanced warming at higher levels in the tropical troposphere - yielding a negative lapse rate feedback. In the Arctic, however, the climatologically stable temperature stratification of the lower troposphere traps warming near the surface and produces a positive lapse rate feedback (Graversen et al., 2014; Pithan & Mauritsen, 2014; Previdi et al., 2021). In the first month of Jan4×CO₂, the SHU and lapse rate feedback warm the Arctic up to 2.5K and 0.4K more than the global average, respectively, and are both statistically significant. Therefore, the rapid development of AA on short timescales in Jan4×CO₂ appears mainly to be a result of these two mechanisms. Previdi et al. (2020) found that the lapse rate feedback is a primary mechanism of AA on short timescales, and our results here support this. Other notable features in Fig. 4a are the Planck feedback that significantly contributes to AA only for the first few weeks and the cloud feedback that opposes AA throughout the first month in our model.

Fig. 4. The difference in Arctic and global average atmospheric column energy budget term
responses for the first month of (a) Jan4×CO₂ and (b) Jul4×CO₂, expressed as warming
contributions. These include the surface albedo feedback (Alb), atmospheric heat transport
(AHT), cloud feedback (Cloud), surface heat uptake (SHU), local deviation of the Planck
feedback (P'), water vapor feedback (q) and lapse rate feedback (LR) in the first month. Opaque
lines indicate that the difference in Arctic and global warming contributions are significantly
different from zero at the 95% level.

For Jul4×CO₂ (Fig. 4b), we find an initially positive AA contribution from SHU, but it becomes negligible and reverses (to oppose AA) within the first week. Instead, the AHT is the leading AA mechanism for the first week before becoming statistically nonsignificant and being surpassed by the surface albedo feedback. The surface albedo feedback remains the dominant AA-producing mechanism for the first month and is related to the rapid decline in sea ice seen in Fig. 2b & 2d and reductions in snow cover. Additionally, the water vapor feedback contributes to AA, albeit weakly.

Fig. 5. (a, c, e) The (a) difference in Arctic and global average, (c) Arctic average, and (e)
global average atmospheric column energy budget term responses in Jan4×CO₂, expressed as
warming contributions. Opaque lines indicate where the contribution is statistically significant at
the 95% level. (b, d, f) As in (a, c, e) but for Jul4×CO₂.

373 On timescales beyond the first month, other mechanisms become important in shaping the 374 magnitude and seasonality of AA. As seen in Fig. 5a & b, the most striking features of the time-375 varying warming contributions to AA for both Jan4×CO₂ and Jul4×CO₂ (Fig. 5a & 5b) are the 376 opposing peaks in the surface albedo feedback and SHU in boreal summer. The surface albedo

feedback has typically been thought to be a major player in AA (Holland & Bitz, 2003: Winton, 2006; Bintanja & van der Linden, 2013; Dai, 2021); however, its seasonality does not match the seasonality of AA (see Fig. 1c & 1d), suggesting that other mechanisms must act to delay or modify its impacts. The opposing peaks in the surface albedo feedback and SHU in the summer supports the idea that as sea ice melts, incoming solar radiation that would otherwise have been reflected out to space is absorbed by the ocean surface. This additional heat absorbed by the ocean mixed layer is subsequently released to the atmosphere in fall and winter (e.g., Stroeve et al., 2012, Boeke & Taylor, 2018; Chung et al., 2021; Hahn et al., 2021; Jenkins & Dai, 2022), thus contributing to the peak in AA in these seasons.

A few of the other terms In Fig. 5 are worth mentioning, notably the Planck feedback. The Planck feedback reflects a change in outgoing longwave radiation in response to a given change in surface temperature, and its difference between the Arctic and global average is thought to be an important contributor to AA (Winton, 2006; Pithan & Mauritsen, 2014; Zhang et al., 2018; Henry & Merlis, 2019; Previdi et al., 2020). Although the Planck feedback produces a small but statistically significant contribution to AA beginning in the first March of Jan4×CO₂ (Fig. 5a), only in the following winter does it become one of the main AA-producing mechanisms. The water vapor feedback also makes small contributions to AA in boreal summer in both Jan4×CO₂ and Jul4×CO₂ (Fig. 5a & 5b). The water vapor feedback's peak contribution in the summer may be related to increased moisture transport into the Arctic, discussed later. Lastly, the atmospheric heat transport (AHT) is very noisy compared to the other terms and does not contribute robustly to AA (Fig. 5a & 5b).

Fig. 6. (a,b) Arctic warming contributions by the dry static energy convergence (S_{conv}) for (a) Jan4×CO₂ (b) Jul4×CO₂. The ensemble means and 30-day rolling average ensemble means are denoted by thin and thick lines, respectively. (c,d) As in (a,b), but for the moisture flux convergence (W_{conv}). Note the difference in y-axis scales.

Let us now investigate further into this statistically nonsignificant AHT. Despite the lack of discernable signal in the total AHT, it is possible that the dry static energy convergence (S_{conv}) and the moisture flux convergence (W_{conv}) into the Arctic, shown in Fig. 6, individually contribute to the development of AA (Held & Soden, 2006). AA is generally associated with decreases in S_{conv} into the Arctic, resulting from the reduced latitudinal temperature gradient, and increases in W_{conv} into the Arctic, a product of the strengthening latitudinal specific humidity gradient (Hwang et al., 2011; Graversen & Burtu, 2016; Previdi et al., 2021). In particular, W_{conv} has been suggested to be a main driver of AA in the context of simplified models (Russotto & Biasutti, 2020). As we can see in Fig. 6, over the two years of our model simulations, S_{conv} is as noisy as the total AHT and does not consistently contribute to or oppose AA in either Jan4×CO₂ and Jul4×CO₂ (Fig. 6a & 6b). W_{conv} contributes to AA mainly during boreal summer (Fig. 6c & 6d); this coincides with periods of positive contributions to AA from the water vapor feedback seen in Fig. 5a & 5b. This suggests that W_{conv} affects the Arctic atmospheric energy budget both

et al., 2019). We have quantified the total temperature and water vapor feedbacks in the stratosphere (Fig. 7) and find that both are generally small contributions to AA compared to tropospheric feedbacks, aside from a brief period in the second spring of Jan4×CO₂ in which the stratospheric temperature feedback contributes up to ~0.55 K to AA in the ensemble mean.

4.3 Surface Energy Budget

The bulk of our analysis so far has focused on the atmospheric column energy budget from a TOA perspective. Given the leading role of SHU in Jan4×CO₂ in AA development (Fig. 4a) and the climatological stratification of the Arctic lower troposphere, we now take a closer look at the surface energy budget. We decompose the SHU response into contributions from radiative and non-radiative flux changes, which we show for the first month in Fig. 8, except for the CO₂ RF previously discussed in Section 4.1. One of the more conspicuous features of the time-varying surface energy balance is the strong positive contribution to AA by the latent heat flux (F_{IH}) in both Jan4×CO₂ and Jul4×CO₂ (Fig. 8a & 8b). Over the first few days, F_{LH} cools the global average ~1K and ~1.4K more than the Arctic in Jan4×CO₂ and Jul4×CO₂ respectively. The latent heat flux persists as the dominant AA mechanism at the surface for the remainder of the first month. In Jan4×CO₂, AA is further reinforced by the surface temperature feedback (Fig. 8a). In

 450 Jul4×CO₂, AA is opposed by negative contributions from the sensible heat flux (F_{SH}) and the 451 surface albedo feedback (Fig. 8b). The magnitudes of other positive contribution terms are 452 smaller than F_{LH} in the first month, supporting the latent heat flux's leading role at the surface in 453 producing ultrafast development of AA.

Fig. 9. The (a) difference in Arctic and global average, (c) Arctic average, and (e) global
average surface energy budget term responses in Jan4×CO₂, expressed as warming contributions.
Opaque lines indicate where the contribution is statistically significant at the 95% level. (b, d, f)
As in (a, c, e) but for Jul4×CO₂.

To determine if the latent heat flux stays the dominant term over longer timescales, we show the surface energy budget terms over the entire 2-year period in Fig. 9. The latent heat flux remains the largest positive contribution to AA in both Jan4×CO₂ and Jul4×CO₂, although the surface temperature feedback regularly surpasses it in the fall and winter as AA nears its peak (Fig. 9a & 9b); the strong positive surface temperature feedback in the Arctic (Fig. 9c & 9d) during these times reflects the large Arctic surface warming and associated enhancement of the surface upwelling LW radiation, a greater enhancement than occurs in the global average (Fig. 9e & 9f). Another prominent feature of the surface energy budget response is the recurring negative peaks in the surface albedo feedback in terms of both AA (Fig. 9a & 9b) and Arctic warming contributions (Fig. 9c & 9d). As previously stated, atmospheric warming from the surface albedo feedback in summer is not realized in that season, as the additional heat is absorbed by the ocean, producing these local minima in albedo warming contributions. Consistent with Boeke & Taylor (2018), small cold-season peaks in sensible and latent heat flux contributions to AA can be seen in Jan4×CO₂ and in the second year of Jul4×CO₂ as the energy stored in the ocean is released into the atmosphere.

The warming contribution of the surface latent heat flux to AA on short timescales (Fig. 8 & Fig. 9a & 9b) warrants further discussion. It is well-established that rapid adjustments of the global hydrological cycle occur following a perturbation in atmospheric CO₂. Specifically, because of the difference in CO₂ radiative forcing at the TOA and surface (Fig. 3), atmospheric radiative cooling decreases as CO₂ increases. This decrease in atmospheric radiative cooling must be balanced in the global mean by a decrease in latent heating from precipitation, and thus a decrease in the upward surface latent heat flux (Allen & Ingram, 2002; Bala et al., 2010). This is reflected in the strong negative global F_{LH} anomaly occurring immediately after $4 \times CO_2$ in both Jan4×CO₂ and Jul4×CO₂ (Fig. 9e & 9f). Over the Arctic, any fast response of the surface F_{LH} is much smaller (Fig. 9c & 9d), resulting in a strong positive contribution from this term to AA.

5. Arctic land vs. ocean response

Given the prominent role of SHU in AA development in Jan4×CO₂ and the potential role of sea ice, it is useful to consider the responses over Arctic land and ocean areas separately. We choose a few timescales over which to summarize the development of AA: the first month, the

1 ว		
3	489	first three months, and the first year after $4 \times CO_2$. The first month roughly corresponds to the
4 5	490	earliest timeframe in which AA is statistically significant in both the January- and July-
6 7	491	initialized simulations, the first three months correspond to the earliest timescale analyzed in
8	492	Previdi et al. (2020), and the first year captures the first complete annual cycle following $4 \times CO_2$.
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 45 36 37 38 39 40 41 42 43 44 55 56 57 58 960	492	Previdi et al. (2020), and the first year captures the first complete annual cycle following 44-CO.

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
∠∪ כ1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
10	
71 // 2	
72 //2	
43 44	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	

Fig. 10. (a,c,e) The change in SAT (shading) and sea ice concentration (aqua contours, %)
averaged over the (a) first month, (c) first three months, and (e) first year following 4×CO₂ in
CESM-LE members initialized January. Hatching indicates areas where the SAT response is not
statistically significant at the 95% confidence level. (b,d,e) As in (a,c,e), but for July.

The spatial distribution of warming, and its relationship to changes in Arctic sea ice. for these 499 periods is shown in Fig. 10. In the first month of Jan4×CO₂, there is statistically significant 500 warming over the entire Arctic domain except the Nordic Seas, with a local maximum in 501 northern Siberia (Fig. 10a). Warming strengthens and spreads to include the entire domain over 502 the first three months (Fig. 10c) and first year (Fig. 10e). Although Jul4×CO₂ exhibits a greater 503 decrease in sea ice in the first few months, the warming signal appears to be amplified over land 504 rather than the ocean (Fig. 10b & 10d). By the end of the first year, Jan $4 \times CO_2$ and Jul $4 \times CO_2$ 505 show similar spatial warming patterns, although overall warming is greater in Jan4×CO₂ (Fig. 506 10e & 10f). By comparing the spatial distribution of SAT and SIC response on all three 507 timescales, it is apparent that areas of maximum warming are *not* co-located with areas of 508 maximum sea ice loss. This key result further demonstrates that mechanisms other than sea ice 509 loss dominate the surface temperature response at these short timescales; however, we note that 510 in the summer sea ice melt season (Fig. 10b & 10d), Arctic SSTs are constrained to remain near 511 the freezing point; thus, we expect greater warming over land where there is no such constraint. 512

To test the presence of land- or ocean-amplified warming, we show a time series of the SAT response averaged over Arctic land and ocean separately (Fig. S3). In both Jan4×CO₂ (Fig. S3a & S3c) and Jul4×CO₂ (Fig. S3b & S3d), a seasonal cycle emerges consisting of land-amplified warming in the summer and ocean-amplified warming in the fall and winter. Fig. S3d confirms our suspicion from Fig. 10b & 10d that there is statistically significant land-amplified warming over the first few months of Jul4×CO₂.

To better understand the land and ocean SAT responses, we have calculated the warming contributions to the Arctic atmospheric column from a TOA perspective for the three time periods, for the land and ocean separately (Fig. 11). As one might expect, SHU is the term with the largest land-ocean difference over all periods in both Jan4×CO₂ and Jul4×CO₂, with the ensemble mean SHU response consistently at least three-times more negative over the ocean than over land. In Jan4×CO₂, this tendency for SHU to preferentially warm land is compensated by temperature feedbacks and AHT in the first few months (Fig. 11a & 11c), yielding little difference in the Arctic land and ocean temperature responses. The SHU is partially, but not
fully, compensated by the surface albedo feedback on short timescales in Jul4×CO₂, producing
the land-amplified warming seen in Fig. S3b & S3d.

Given the magnitude of the SHU on short timescales relative to other terms in the TOA energy budget, we again decompose the SHU into individual terms in Fig. S4. As a reminder, the sign of the surface heat flux terms is chosen such that positive indicates the movement of energy from the surface to the atmospheric column. The sensible heat flux appears to be the main cause of land-over-ocean SHU warming in the first month and first three months of Jan4×CO₂ because it is positive over land and negative over the ocean (Fig. S4a & S4c). Over the first year of Jan4×CO₂ and all periods in Jul4×CO₂, the surface albedo feedback dominates land-over-ocean warming since it is considerably more negative for the ocean than land (Fig. S4b, S4d-f). In other words, the surface albedo feedback moves a greater amount of energy from the atmospheric column into the ocean than into land. Thus, the surface albedo feedback and sensible heat fluxes are the main drivers of the large contribution of SHU to the different Arctic land and ocean SAT responses.

Fig. 11. (a, c, e) Atmospheric column energy budget terms from a TOA perspective averaged
over the (a) first month, (c) first three months, and (e) first year of Jan4×CO₂. The error bars
denote 95% confidence intervals. (b, d, f) As in (a, c, e), but for Jul4×CO₂.

545 6. Conclusions

In this study, we used two large ensembles of GCM simulations, one in which CO₂ is instantaneously quadrupled in January, the other in July, and observed how fast AA develops. We then attributed the AA response to local feedbacks and energy transports using an energy budget analysis from both TOA and surface perspectives. Finally, we analyzed the spatial pattern of Arctic warming and decomposed Arctic warming contributions into land and ocean components. Our results now allow us to revisit the key questions posed in the introduction:

How quickly does AA develop in an ensemble of model simulations subjected to an instantaneous CO₂ increase? Following a quadrupling of CO₂ in January or July, statistically

significant AA develops in less than a month. In Jan4×CO₂, AA develops immediately (i.e., on day 1) after the radiative forcing is applied, whereas robust AA develops after 25 days in Jul4×CO₂.

To the best of our knowledge, our findings are novel in that AA has rarely been examined on such short timescales, with previous studies focusing on much longer (e.g., multi-decadal) timescales. An exception to this is the recent study by Previdi et al. (2020). In that study, which used monthly mean model output, AA was present after three months following an abrupt quadrupling of CO₂ in January. Our use of large ensembles of daily output for the present study allowed AA to be detected considerably earlier with the same CO₂ forcing. Notably, AA precedes any statistically significant decrease in Arctic sea ice in January-initialized simulations; conversely, AA development tends to lag the response of the sea ice area in Jul4×CO₂. This demonstrates that the development of AA does not require a decrease in Arctic sea ice, confirming the findings of Previdi et al. (2020) and supports the results of several other modeling studies that employed locked sea ice/surface albedo feedbacks (Graversen & Wang, 2009; Graversen et al., 2014, Merlis 2014, Dekker et al., 2019) and aquaplanets without sea ice (Langen & Alexeev, 2007; Langen et al., 2012; Russotto & Biasutti, 2020).

What mechanisms best explain the initial appearance and the subsequent evolution of AA? From an atmospheric column energy budget perspective, SHU and, to a lesser extent, the lapse rate feedback are the dominant mechanisms by which AA develops in Jan4×CO₂. A similar positive contribution from the lapse rate feedback on short timescales was also documented by Previdi et al. (2020). Jul4×CO₂ shows a similar initially positive contribution to AA from SHU, but it becomes negligible in the first week. Instead, in $Jul4 \times CO_2$, the surface albedo feedback appears to be the leading mechanism by which AA develops on short timescales.

Upon decomposing the SHU response, we found that the difference in the Arctic and global average surface latent heat flux response produces AA on ultrafast timescales. The difference in 4×CO₂ surface radiative forcing between the Arctic and global average further contributes to this ultrafast AA response in Jul4×CO₂ but is much smaller. The rapid response of the surface latent heat flux that we have documented here, which is dominated by a strong reduction in the global-mean surface evaporation, has previously been recognized as a rapid adjustment to increasing atmospheric CO₂ in studies of the global hydrological cycle (Allen &

1 2	
3	586
4 5	587
6 7	588
8 0	589
10	590
11 12	591
13 14	592
15	593
17	594
18 19	595
20 21	596
22	597
23 24	598
25 26	599
27 28	600
29	601
30 31	602
32 33	603
34 35	604
36	605
37 38	606
39 40	607
41	608
42 43	609
44 45	610
46 47	611
48	612
49 50	613
51 52	614
53 5⊿	615
55	
56 57	

Ingram, 2002; Bala et al., 2010). However, it is our understanding that this study is the first to
recognize its importance for AA.

On longer timescales (i.e., > 1 month), other mechanisms become important in shaping
the evolution of AA in the simulations. The most prominent contribution to AA in both
Jan4×CO₂ and Jul4×CO₂ comes from the summertime surface albedo feedback; increased
moisture flux convergence and water vapor feedback are additional smaller contributions to AA
in the summer. Despite this, AA is absent (or very weak) during the summer months, which can
be explained by the substantially negative SHU contribution and, to a lesser extent, the lapse rate
feedback. The strongly negative SHU contribution reflects the absorption of excess heat by the
ocean mixed layer (mainly due to the surface albedo feedback). This excess heat is released into
the atmosphere later in the year. By autumn, AA begins to strengthen and reaches its peak
intensity at the end of October, with positive contributions from the Planck feedback, lapse rate
feedback, and SHU (Rigor et al., 2002; Serreze et al., 2009; Screen & Simmonds, 2010; Stroeve
et al., 2012; Boeke & Taylor, 2018; Chung et al., 2021; Hahm et al., 2021; Jenkins & Dai, 2022).

600 We stress that commonly cited AA mechanisms like sea ice loss and the moisture flux 601 convergence into the Arctic are not unimportant, but rather cannot explain the ultrafast 602 development of AA after CO_2 increase. Our results show that the leading causes of AA depend 603 on the timescale examined, a nuance often overlooked in the existing body of AA research. 604 Although an abrupt quadrupling of CO_2 is a highly idealized radiative forcing chosen for the 605 purpose of this study, the evolutions of feedbacks and energy transports are likely important 606 considerations for any study of AA mechanisms.

608How does the time of year in which atmospheric CO_2 is quadrupled affect AA609development? AA is slower to develop in Jul4×CO2 than in Jan4×CO2 (25 days vs. one day),610hampered by an immediately negative Arctic lapse rate feedback and a negative contribution611from SHU. This result is unsurprising, given the well-known summertime minimum in AA612(Laîné et al., 2016; Previdi et al., 2021). Despite this, robust AA forms by the end of the first613month in both experiments and persists through most of the following two years. Maximum614Arctic SAT increase in Jan4×CO2 and Jul4×CO2 occurs over land areas, further evidence that sea615ice loss is not the dominant mechanism in the rapid development of AA.

2		
3 4	616	It is interesting to consider whether the ultrafast SHU and lapse rate responses
5 6 7	617	documented here (i.e., those occurring in the first few days to weeks of 4×CO ₂) may be classified
	618	as rapid adjustments, which are defined as the response to an external forcing that is independent
8 9	619	of global surface temperature change (Forster et al., 2013). Given that the global SAT change is
10	620	small on these fast timescales, the adjustment framework may be appropriate. To the extent that
12	621	it is, it would suggest that AA fundamentally owes its existence to rapid adjustments, which act
13 14	622	to enhance Arctic warming before slower components of the climate system, such as sea ice,
15 16	623	have a chance to respond. The ultrafast response of the Arctic to radiative forcing implies the
17	624	potential for significant near-term mitigation of Arctic warming if humanity acts quickly to
18 19	625	reduce atmospheric CO ₂ .
20 21 22 23	626	7. Funding
24	627	TJ, MP, KS and LP were funded by the National Science Foundation Office of Polar
25 26	628	Programs, Arctic Research Opportunities Grant # PLR-1603350. TJ was also funded by the
27 28	629	National Science Foundation Graduate Research Fellowship Program, Grant # DGE-2036197.
29 30	630	GC was funded by the National Swiss Science Foundation Ambizione Grant #PZ00P2_180043.
31 32 33	631	7. Acknowledgements
34 35	632	The authors gratefully acknowledge the NCAR Large Ensemble Community Project and
36 37	633	supercomputing resources provided by the National Center for Atmospheric Research
38 30	634	Computing and Informational Systems Lab, technical support from Dr. Gustavo Correa, and the
40 41	635	insightful contributions from two anonymous reviewers.
42 43	636	8. Data availability statement
45	637	All code used in data analysis and visualization is publicly available at
46 47	638	https://doi.org/10.5281/zenodo.7998734 The CESM simulations that support the findings of this
48 49	639	study are available upon request from the authors.
50 51		
52	640	References
53 54	641	Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the
55 56	642	hydrologic cycle. <i>Nature</i> , 419(6903), 228–232. https://doi.org/10.1038/nature01092
57 58		
58 59		
60		

Page 31 of 39

1

2		
3 4	643	Altdorff, D., Borchard, N., Young, E. H., Galagedara, L., Sorvali, J., Quideau, S., & Unc, A.
5	644	(2021). Agriculture in boreal and Arctic regions requires an integrated global approach
6 7	645	for research and policy. Agronomy for Sustainable Development, 41(2), 23.
8	646	https://doi.org/10.1007/s13593-021-00676-1
9 10		
11 12	647	Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of
13	648	the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
14 15	649	Science, 41(251), 237-276. https://doi.org/10.1080/14786449608620846
16 17	650	Bala, G., Caldeira, K., & Nemani, R. (2010). Fast versus slow response in climate change:
18	651	implications for the global hydrological cycle. Climate Dynamics, 35(2), 423–434.
20	652	https://doi.org/10.1007/s00382-009-0583-y
21 22		
23	653	Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., & Polvani, L. M. (2019).
24 25	654	Stratospheric water vapor: an important climate feedback. Climate Dynamics, 53(3),
26 27	655	1697–1710. https://doi.org/10.1007/s00382-019-04721-4
28 29	656	Bintanja, R., & Krikken, F. (2016). Magnitude and pattern of Arctic warming governed by the
30	657	seasonality of radiative forcing. Scientific Reports, 6(1), 38287.
31 32 33	658	https://doi.org/10.1038/srep38287
34	659	Bintanja, R., & van der Linden, E. C. (2013). The changing seasonal climate in the Arctic.
35 36 37	660	Scientific Reports, 3(1), 1556. https://doi.org/10.1038/srep01556
38 39	661	Bitz, C. M., Gent, P. R., Woodgate, R. A., Holland, M. M., & Lindsay, R. (2006). The Influence
40 41	662	of Sea Ice on Ocean Heat Uptake in Response to Increasing CO2. Journal of Climate,
41 42 42	663	19(11), 2437-2450. https://doi.org/10.1175/JCLI3756.1
45 44 45	664	Boeke, R. C., & Taylor, P. C. (2018). Seasonal energy exchange in sea ice retreat regions
46	665	contributes to differences in projected Arctic warming. Nature Communications, 9(1),
47 48	666	5017. https://doi.org/10.1038/s41467-018-07061-9
49 50	667	Boeke, R. C., Taylor, P. C., & Sejas, S. A. (2021). On the Nature of the Arctic's Positive Lapse-
51 52	668	Rate Feedback. Geophysical Research Letters, 48(1), e2020GL091109.
53 54	669	https://doi.org/10.1029/2020GL091109
55 56	7	
57		
58		

3 4	670	Cao, Y., Liang, S., Chen, X., He, T., Wang, D., & Cheng, X. (2017). Enhanced wintertime
5	671	greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Scientific
6 7 8	672	Reports, 7(1), 8462. https://doi.org/10.1038/s41598-017-08545-2
9	673	Chung, ES., Ha, KJ., Timmermann, A., Stuecker, M. F., Bodai, T., & Lee, SK. (2021). Cold-
10 11	674	Season Arctic Amplification Driven by Arctic Ocean-Mediated Seasonal Energy
12 13 14	675	Transfer. Earth's Future, 9(2), e2020EF001898. https://doi.org/10.1029/2020EF001898
15	676	Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., et al. (2014).
16 17	677	Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9),
18 19	678	627–637. <u>https://doi.org/10.1038/ngeo2234</u>
20 21	679	Conley, A. J., Lamarque, JF., Vitt, F., Collins, W. D., & Kiehl, J. (2013). PORT, a CESM tool
22 23	680	for the diagnosis of radiative forcing. Geoscientific Model Development, 6(2), 469-476.
24 25	681	https://doi.org/10.5194/gmd-6-469-2013
26 27	682	Crook, J. A., Forster, P. M., & Stuber, N. (2011). Spatial Patterns of Modeled Climate Feedback
28 29	683	and Contributions to Temperature Response and Polar Amplification. Journal of Climate,
30 31	684	24(14), 3575-3592. https://doi.org/10.1175/2011JCLI3863.1
32 33	685	Dai, H. (2021). Roles of Surface Albedo, Surface Temperature and Carbon Dioxide in the
34 35	686	Seasonal Variation of Arctic Amplification. Geophysical Research Letters, 48(4),
36 37	687	e2020GL090301. https://doi.org/10.1029/2020GL090301
38 39	688	Dekker, E., Bintanja, R., & Severijns, C. (2019). Nudging the Arctic Ocean to Quantify Sea Ice
40	689	Feedbacks. Journal of Climate, 32(8), 2381–2395. https://doi.org/10.1175/JCLI-D-18-
41 42 43	690	<u>0321.1</u>
44	691	England, M., Jahn, A., & Polvani, L. (2019). Nonuniform Contribution of Internal Variability to
45 46	692	Recent Arctic Sea Ice Loss. Journal of Climate, 32(13), 4039-4053.
47 48	693	https://doi.org/10.1175/JCLI-D-18-0864.1
49 50	694	Feldl, N., Bordoni, S., & Merlis, T. M. (2017). Coupled High-Latitude Climate Feedbacks and
51 52	695	Their Impact on Atmospheric Heat Transport. Journal of Climate, 30(1), 189–201.
53 54	696	https://doi.org/10.1175/JCLI-D-16-0324.1
55 56		
57		T T
58 59		
60		₹

2		
3 4	697	Feldl, N., Po-Chedley, S., Singh, H. K. A., Hay, S., & Kushner, P. J. (2020). Sea ice and
5	698	atmospheric circulation shape the high-latitude lapse rate feedback. Npj Climate and
6 7 0	699	Atmospheric Science, 3(1), 1–9. <u>https://doi.org/10.1038/s41612-020-00146-7</u>
8 9 10	700	Feldl, N., & Roe, G. H. (2013). Four perspectives on climate feedbacks. Geophysical Research
11 12	701	Letters, 40(15), 4007–4011. <u>https://doi.org/10.1002/grl.50711</u>
13 14	702	Forster, P. M., Andrews, T., Good, P., Gregory, J. M., Jackson, L. S., & Zelinka, M. (2013).
15	703	Evaluating adjusted forcing and model spread for historical and future scenarios in the
16 17	704	CMIP5 generation of climate models. Journal of Geophysical Research: Atmospheres,
18 19	705	118(3), 1139–1150. https://doi.org/10.1002/jgrd.50174
20 21	706	Francis, J. A., & Vavrus, S. J. (2012). Evidence linking Arctic amplification to extreme weather
22 23	707	in mid-latitudes. Geophysical Research Letters, 39(6).
24 25	708	https://doi.org/10.1029/2012GL051000
26 27	709	Gong, T., Feldstein, S., & Lee, S. (2017). The Role of Downward Infrared Radiation in the
28 29	710	Recent Arctic Winter Warming Trend. Journal of Climate, 30(13), 4937-4949.
30 31	711	https://doi.org/10.1175/JCLI-D-16-0180.1
32 33	712	Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., et al.
34 35	713	(2018). Quantifying climate feedbacks in polar regions. Nature Communications, 9(1),
36 37	714	1919. https://doi.org/10.1038/s41467-018-04173-0
38 39	715	Graversen, R. G., & Burtu, M. (2016). Arctic amplification enhanced by latent energy transport
40	716	of atmospheric planetary waves. Quarterly Journal of the Royal Meteorological Society,
41 42 43	717	142(698), 2046–2054. https://doi.org/10.1002/qj.2802
44	718	Graversen, R. G., & Langen, P. L. (2019). On the Role of the Atmospheric Energy Transport in 2
46	719	× CO2–Induced Polar Amplification in CESM1. Journal of Climate, 32(13), 3941–3956.
47 48 49	720	https://doi.org/10.1175/JCLI-D-18-0546.1
50	721	Graversen, R. G., Langen, P. L., & Mauritsen, T. (2014). Polar Amplification in CCSM4:
51 52	722	Contributions from the Lapse Rate and Surface Albedo Feedbacks. Journal of Climate,
53 54	723	27(12), 4433-4450. https://doi.org/10.1175/JCLI-D-13-00551.1
55		
50 57		
58 59		
60		

1 2		
3	724	Graversen, R. G., & Wang, M. (2009). Polar amplification in a coupled climate model with
4 5	725	locked albedo. Climate Dynamics, 33(5), 629-643. https://doi.org/10.1007/s00382-009-
6 7 8	726	0535-6
9 10	727	Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M., & Donohoe, A. (2021). Contributions to
11	728	Polar Amplification in CMIP5 and CMIP6 Models. Frontiers in Earth Science,
12 13 14	729	9(710036). https://doi.org/10.3389/feart.2021.710036
15	730	Held, I. M., & Soden, B. J. (2006). Robust Responses of the Hydrological Cycle to Global
16 17 18	731	Warming. Journal of Climate, 19(21), 5686–5699. https://doi.org/10.1175/JCLI3990.1
19 20	732	Ho, J. (2010). The implications of Arctic sea ice decline on shipping. Marine Policy, 34(3), 713-
20 21 22	733	715. <u>https://doi.org/10.1016/j.marpol.2009.10.009</u>
23 24	734	Holland, M. M., & Bitz, C. M. (2003). Polar amplification of climate change in coupled models.
25 26	735	<i>Climate Dynamics</i> , 21(3), 221–232. <u>https://doi.org/10.1007/s00382-003-0332-6</u>
27 28	736	Huang, Y., Tan, X., & Xia, Y. (2016). Inhomogeneous radiative forcing of homogeneous
29	737	greenhouse gases. Journal of Geophysical Research: Atmospheres, 121(6), 2780–2789.
30 31 32	738	https://doi.org/10.1002/2015JD024569
33	739	Huang, Y., Xia, Y., & Tan, X. (2017). On the pattern of CO2 radiative forcing and poleward
34 35	740	energy transport. Journal of Geophysical Research: Atmospheres, 122(20), 10,578-
36 37 38	741	10,593. https://doi.org/10.1002/2017JD027221
39 40	742	Huang, Y., Zhang, M., Xia, Y., Hu, Y., & Son, SW. (2016). Is there a stratospheric radiative
40	743	feedback in global warming simulations? Climate Dynamics, 46(1), 177–186.
42 43 44	744	https://doi.org/10.1007/s00382-015-2577-2
45	745	Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. (2013). The
46 47	746	Community Earth System Model: A Framework for Collaborative Research. Bulletin of
48 49	747	the American Meteorological Society, 94(9), 1339–1360. https://doi.org/10.1175/BAMS-
50 51	748	<u>D-12-00121.1</u>
52 53	749	Hwang, YT., Frierson, D. M. W., & Kay, J. E. (2011). Coupling between Arctic feedbacks and
54	750	changes in poleward energy transport. Geophysical Research Letters, 38(17).
55 56	751	https://doi.org/10.1029/2011GL048546
57 58 59		
60		

Page 35 of 39

1 2		
3	752	Jahn, A., Kay, J. E., Holland, M. M., & Hall, D. M. (2016). How predictable is the timing of a
4 5	753	summer ice-free Arctic? Geophysical Research Letters, 43(17), 9113–9120.
6 7 8	754	https://doi.org/10.1002/2016GL070067
8 9 10	755	Jenkins, M. T., & Dai, A. (2022). Arctic Climate Feedbacks in ERA5 Reanalysis: Seasonal and
11 12	756	Spatial Variations and the Impact of Sea-Ice Loss. <i>Geophysical Research Letters</i> , 49(16),
12 13 14	757	e2022GL099263. https://doi.org/10.1029/2022GL099263
15	758	Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., et al. (2015). The Community
10	759	Earth System Model (CESM) Large Ensemble Project: A Community Resource for
18 19	760	Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the
20	761	American Meteorological Society, 96(8), 1333–1349. https://doi.org/10.1175/BAMS-D-
21 22 23	762	<u>13-00255.1</u>
24 25	763	Kay, J. E., & Deser, C. (2016). The Community Earth System Model (CESM) Large Ensemble
25 26 27	764	Project. UCAR/NCAR Climate Data Gateway. https://doi.org/10.5065/d6j101d1
28 29	765	Kiehl, J. T., & Ramanathan, V. (1982). Radiative Heating Due to Increased CO2: The Role of
30	766	H2O Continuum Absorption in the 12–18 µm Region. Journal of the Atmospheric
31 32	767	Sciences, 39(12), 2923-2926. https://doi.org/10.1175/1520-
33 34	768	<u>0469(1982)039<2923:RHDTIC>2.0.CO;2</u>
35 36	769	Labe, Z., Magnusdottir, G., & Stern, H. (2018). Variability of Arctic Sea Ice Thickness Using
37 38	770	PIOMAS and the CESM Large Ensemble. Journal of Climate, 31(8), 3233–3247.
39 40	771	https://doi.org/10.1175/JCLI-D-17-0436.1
41 42	772	Laîné, A., Yoshimori, M., & Abe-Ouchi, A. (2016). Surface Arctic Amplification Factors in
43 44	773	CMIP5 Models: Land and Oceanic Surfaces and Seasonality. Journal of Climate, 29(9),
45 46	774	3297-3316. https://doi.org/10.1175/JCLI-D-15-0497.1
47 48	775	Langen, P. L., & Alexeev, V. A. (2007). Polar amplification as a preferred response in an
49 50	776	idealized aquaplanet GCM. Climate Dynamics, 29(2), 305-317.
51 52 53	777	https://doi.org/10.1007/s00382-006-0221-x
54 55		
56		
57 58		
59		
60		

2 3	778	Langen, P. L., Graversen, R. G., & Mauritsen, T. (2012). Separation of Contributions from
4 5	779	Radiative Feedbacks to Polar Amplification on an Aquaplanet. Journal of Climate, 25(8),
6	780	3010_3024 https://doi.org/10.1175/ICLL-D-11-00246.1
/ 8	780	5010 5024. <u>https://doi.org/10.1175/SCLI-D-11-00240.1</u>
9 10	781	Lee, S. (2014). A theory for polar amplification from a general circulation perspective. Asia-
11	782	Pacific Journal of Atmospheric Sciences, 50(1), 31-43. https://doi.org/10.1007/s13143-
12 13 14	783	014-0024-7
15	784	van der Linden, E. C., Le Bars, D., Bintanja, R., & Hazeleger, W. (2019). Oceanic heat transport
16 17	785	into the Arctic under high and low CO ₂ forcing. <i>Climate Dynamics</i> , 53(7), 4763–4780.
18 19	786	https://doi.org/10.1007/s00382-019-04824-y
20 21	787	Manabe, S., & Stouffer, R. J. (1980). Sensitivity of a global climate model to an increase of CO2
22 23	788	concentration in the atmosphere. Journal of Geophysical Research: Oceans, 85(C10),
24 25	789	5529–5554. https://doi.org/10.1029/JC085iC10p05529
26 27	790	Meltofte, H., Barry, T., Berteaux, D., Bültmann, H., Christiansen, J. S., Cook, J. A., et al. (2013).
28 29	791	Arctic Biodiversity Assessment. Synthesis. Conservation of Arctic Flora and Fauna
30 31	792	(CAFF). Retrieved from https://oaarchive.arctic-council.org/handle/11374/232
32 33	793	Merlis, T. M. (2014). Interacting components of the top-of-atmosphere energy balance affect
34 35	794	changes in regional surface temperature. Geophysical Research Letters, 41(20), 7291-
36 37	795	7297. https://doi.org/10.1002/2014GL061700
38 39	796	Merlis, T. M., & Henry, M. (2018). Simple Estimates of Polar Amplification in Moist Diffusive
40	797	Energy Balance Models. Journal of Climate, 31(15), 5811-5824.
41 42	798	https://doi.org/10.1175/JCLI-D-17-0578.1
43 44	799	Moon, T. A., Druckenmiller, M. L., & Thoman, R. L. (2021). NOAA Arctic Report Card 2021
45 46 47	800	Executive Summary. https://doi.org/10.25923/5S0F-5163
48	801	National Snow & Ice Data Center. (2020, May 4). Arctic People. Retrieved May 9, 2022, from
49 50	802	https://nsidc.org/cryosphere/arctic-meteorology/arctic-people.html
51 52 53	803	Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in
54	804	contemporary climate models. Nature Geoscience, 7(3), 181-184.
55 56 57	805	https://doi.org/10.1038/ngeo2071
58 59		

2		
4	806	Previdi, M., Janoski, T. P., Chiodo, G., Smith, K. L., & Polvani, L. M. (2020). Arctic
5	807	Amplification: A Rapid Response to Radiative Forcing. Geophysical Research Letters,
0 7 8	808	47(17), e2020GL089933. <u>https://doi.org/10.1029/2020GL089933</u>
9 10	809	Previdi, M., Smith, K. L., & Polvani, L. M. (2021). Arctic amplification of climate change: a
11	810	review of underlying mechanisms. Environmental Research Letters, 16(9), 093003.
12 13 14	811	https://doi.org/10.1088/1748-9326/ac1c29
15	812	Raval, A., & Ramanathan, V. (1989). Observational determination of the greenhouse effect.
16 17	813	Nature, 342(6251), 758-761. https://doi.org/10.1038/342758a0
18 19 20	814	Rigor, I. G., Wallace, J. M., & Colony, R. L. (2002). Response of Sea Ice to the Arctic
21	815	Oscillation. Journal of Climate, 15(18), 2648-2663. https://doi.org/10.1175/1520-
22 23	816	<u>0442(2002)015<2648:ROSITT>2.0.CO;2</u>
24 25 26	817	Russotto, R. D., & Biasutti, M. (2020). Polar Amplification as an Inherent Response of a
26 27	818	Circulating Atmosphere: Results From the TRACMIP Aquaplanets. Geophysical
28 29	819	Research Letters, 47(6), e2019GL086771. https://doi.org/10.1029/2019GL086771
30 31	820	Screen, J. A., & Simmonds, I. (2010). The central role of diminishing sea ice in recent Arctic
32 33	821	temperature amplification. Nature, 464(7293), 1334–1337.
34 35	822	https://doi.org/10.1038/nature09051
36 37	823	Screen, J. A., Deser, C., Simmonds, I., & Tomas, R. (2014). Atmospheric impacts of Arctic sea-
38 39	824	ice loss, 1979–2009: separating forced change from atmospheric internal variability.
40 41	825	Climate Dynamics, 43(1), 333–344. <u>https://doi.org/10.1007/s00382-013-1830-9</u>
42 43	826	Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., & Holland, M. M. (2009). The
44 45	827	emergence of surface-based Arctic amplification. The Cryosphere, 3(1), 11-19.
46 47	828	https://doi.org/10.5194/tc-3-11-2009
48 49	829	Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008). Using the Radiative Kernel Technique to
50	830	Calculate Climate Feedbacks in NCAR's Community Atmospheric Model. Journal of
51 52 53	831	Climate, 21(10), 2269–2282. https://doi.org/10.1175/2007JCLI2044.1
55 54		
55 56		
57		
58 59		
60		

2		
3 4	832	Singh, H. A., Rasch, P. J., & Rose, B. E. J. (2017). Increased Ocean Heat Convergence Into the
5	833	High Latitudes With CO2 Doubling Enhances Polar-Amplified Warming. Geophysical
6 7 8	834	Research Letters, 44(20), 10,583-10,591. https://doi.org/10.1002/2017GL074561
9 10	835	Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S., et al. (2022). Robust
11	836	but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature
12 13 14	837	Communications, 13(1), 727. <u>https://doi.org/10.1038/s41467-022-28283-y</u>
15	838	Smith, Doug M., Screen, J. A., Deser, C., Cohen, J., Fyfe, J. C., García-Serrano, J., et al. (2019).
16 17	839	The Polar Amplification Model Intercomparison Project (PAMIP) contribution to
18 19	840	CMIP6: investigating the causes and consequences of polar amplification. Geoscientific
20 21	841	Model Development, 12(3), 1139–1164. https://doi.org/10.5194/gmd-12-1139-2019
22 23	842	Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T., & Shields, C. A. (2008).
24	843	Quantifying Climate Feedbacks Using Radiative Kernels. Journal of Climate, 21(14),
25 26 27	844	3504–3520. https://doi.org/10.1175/2007JCLI2110.1
28 29	845	Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., & Barrett, A. P. (2012).
30	846	The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change,
31 32 33	847	110(3), 1005–1027. https://doi.org/10.1007/s10584-011-0101-1
34	848	Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, SP., et al.
36	849	(2018). Polar amplification dominated by local forcing and feedbacks. Nature Climate
37 38 39	850	Change, 8(12), 1076–1081. https://doi.org/10.1038/s41558-018-0339-y
40	851	Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., & Jahn, A. (2015). Influence of internal
41 42	852	variability on Arctic sea-ice trends. Nature Climate Change, 5(2), 86-89.
43 44	853	https://doi.org/10.1038/nclimate2483
45 46	854	Vavrus, S. J., Bhatt, U. S., & Alexeev, V. A. (2011). Factors Influencing Simulated Changes in
47 48	855	Future Arctic Cloudiness. Journal of Climate, 24(18), 4817-4830.
49 50	856	https://doi.org/10.1175/2011JCLI4029.1
51 52	857	Wang, Q., Fan, X., & Wang, M. (2016). Evidence of high-elevation amplification versus Arctic
53 54	858	amplification. Scientific Reports, 6(1), 19219. https://doi.org/10.1038/srep19219
55 56 57 58 59		
60		

1 ว		
3	859	Winton, M. (2006). Amplified Arctic climate change: What does surface albedo feedback have to
4 5 6	860	do with it? Geophysical Research Letters, 33(3). https://doi.org/10.1029/2005GL025244
7 8	861	Yang, W., & Magnusdottir, G. (2018). Year-to-year Variability in Arctic Minimum Sea Ice
9	862	Extent and its Preconditions in Observations and the CESM Large Ensemble Simulations.
10 11 12	863	Scientific Reports, 8(1), 9070. https://doi.org/10.1038/s41598-018-27149-y
13	864	Zhang, R., Wang, H., Fu, Q., Pendergrass, A. G., Wang, M., Yang, Y., et al. (2018). Local
14	865	Radiative Feedbacks Over the Arctic Based on Observed Short-Term Climate Variations.
16 17	866	Geophysical Research Letters, 45(11), 5761–5770.
18 19	867	https://doi.org/10.1029/2018GL077852
20 21	868	Zubrzycki, S., Kutzbach, L., & Pfeiffer, EM. (2014). Permafrost-affected soils and their carbon
22 23	869	pools with a focus on the Russian Arctic. Solid Earth, 5(2), 595–609.
24 25	870	https://doi.org/10.5194/se-5-595-2014
$\begin{array}{c} 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 950\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		