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Abstract
Arctic amplification (AA)—the greater warming of the Arctic near-surface temperature relative to
its global mean value—is a prominent feature of the climate response to increasing greenhouse
gases. Recent work has revealed the importance of ozone-depleting substances (ODS) in
contributing to Arctic warming and sea-ice loss. Here, using ensembles of climate model
integrations, we expand on that work and directly contrast Arctic warming from ODS to that from
carbon dioxide (CO2), over the 1955–2005 period when ODS loading peaked. We find that the
Arctic warming and sea-ice loss from ODS are slightly more than half (52%–59%) those from CO2.
We further show that the strength of AA for ODS is 1.44 times larger than that for CO2, and that
this mainly stems from more positive Planck, albedo, lapse-rate, and cloud feedbacks. Our results
suggest that AA would be considerably stronger than presently observed had the Montreal Protocol
not been signed.

1. Introduction

Arctic amplification (AA)—the enhanced surface
warming of theArctic compared to the globalmean—
is a prominent feature of climate change. It has been
detected in observations in recent decades, and is
robustly simulated by global climatemodels (Holland
and Bitz 2003, Serreze et al 2009, Hartmann et al
2013). Within the Arctic, AA has resulted in sub-
stantial impacts on a wide spectrum of natural and
human systems (Meredith et al 2019). Outside the
Arctic, AA has been claimed to affect the frequency
of extreme weather events in midlatitudes by altering
the large-scale atmospheric circulation e.g., Francis
and Vavrus (2012), Cohen et al (2014), Coumou et al
(2018) although these claims and their underlying
mechanisms are hotly debated e.g., Barnes (2013),

Kretschmer et al (2016), Blackport and Screen (2020),
Cohen et al (2020), Liang et al (2021). Understand-
ing the causes of AA is, thus, not only an important
scientific endeavour, but also one with regional and
possibly global implications (Meredith et al 2019).

Much attention has been devoted to exploring the
mechanisms behind AA. Many studies have emphas-
ized the role of local feedback processes e.g., Goosse
et al (2018), Stuecker et al (2018), Beer et al (2020),
Feldl et al (2020), Chung et al (2021), of heat and
moisture transport from lower latitudes e.g., Hwang
et al (2011), Graversen and Burtu (2016), Gong et al
(2017), Yang and Magnusdottir (2017), Yoshimori
et al (2017), Graversen and Langen (2019), or even of
biological processes e.g., Swann et al (2010), Park et al
(2015, 2020), Pefanis et al (2020). However, much
uncertainty remains as to the relative contributions
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from the many proposed mechanisms (Previdi et al
2021).

Less attention, however, has been devoted to
assessing which anthropogenic forcings might be
responsible for AA. There is little doubt that well-
mixed greenhouse gases (GHGs) are the most
important anthropogenic driver of Arctic warming
e.g., Najafi et al (2015), Stjern et al (2019). While it
is often assumed that the vast majority of the Arctic
warming comes from CO2, a recent study (Polvani
et al 2020) has reported that Arctic warming would
have been reduced by a factor of two if the atmo-
spheric amount of ozone-depleting substances (here-
after, ODS, which are halogen-containing gases such
as chlorofluorocarbons) had not increased between
1955 and 2005 (ODS emissions actually increased
from around the mid-1950s through the 1980s, and
declined rapidly thereafter). Since the radiative for-
cing from ODS during 1955–2005 is estimated to
be about one third of the radiative forcing from
CO2 Meinshausen et al (2011), as estimated by, the
study of Polvani et al (2020) raises the possibility that
ODS may be more efficient at warming the Arctic
than CO2. This importance of ODS for Arctic warm-
ing has also informed in a modeling study of Goyal
et al (2019). Using the so-called ‘world avoided’ scen-
ario, they found that present-day Arctic temperat-
ures would be 1 to 2 K warmer than observed had
ODS emissions not been regulated by the Montreal
Protocol.

Hence, the goal of this paper: to determine
whether the AA caused byODS is greater than the one
caused by CO2. Stjern et al Stjern et al (2019) recently
quantified the AA caused by different drivers of cli-
mate change (CO2, CH4, black carbon, SO4, and the
solar constant), and concluded that the annual mean
AA is similar among those drivers. However, ODS
were not included in their study, being considered
minor forcing agents. ODS have long been known to
be potent greenhouse gases (Ramanathan et al 1987,
Shine 1991), with Global Warming Potentials thou-
sands of times larger thanCO2Hodnebrog et al (2013,
2020), and have been shown to considerably affect
the climate system not only at high Southern latit-
udes (Solomon et al 2015) and in the tropics (Polvani
and Bellomo 2019), but also in the Arctic(Polvani et al
2020).

The novelty of this study, which builds on the
findings of Polvani et al (2020), is that we here con-
duct and analyze new ensembles of global climate
model integrations specifically designed to contrast
ODS to carbon dioxide, so as to isolate and compare
their respective contributions to Arctic warming over
the 1955–2005 period. We not only focus on Arctic
near-surface air temperature and sea-ice changes, but
also show that ODS cause an AA that is 44% stronger
than that caused by CO2. We further show that ODS
and CO2 impacts are additive, and that the impact
of stratospheric ozone depletion is negligible. Finally,

we perform a feedback analysis to understand the
underlying mechanisms that allow ODS to produce
stronger AA than CO2.

2. Methods

In this study, we examine five ensembles of
simulations—each consisting of ten ensemble mem-
bers differing only in their initial conditions—carried
out with the Community Earth System Model Hur-
rell et al (2013), CESM, version 1: two new ensembles
performed to enable explicit comparison of ODS and
CO2 impacts and three ensembles from Polvani et al
(2020). The simulations cover the 1955–2005 period,
when ODS forcing increased rapidly Polvani et al
(2020), see figure 1 in . The first ensemble consists of
ten historical integrations performed by the CESM
Large Ensemble Project (Kay et al 2015), hereafter
referred to as ALL, to indicate that these runs were
forced by all natural and anthropogenic historical
forcings following the Coupled Model Intercompar-
ison Project Phase 5 protocol Taylor et al (2012).
The second and third ensembles of integrations, con-
ducted as part of the Polvani et al (2020) study, are
identical to ALL except that in the second ensemble
the ODS concentrations are fixed at 1955 levels, while
in the third ensemble both ODS and stratospheric
ozone concentrations are fixed at their 1955 levels.
To cleanly isolate the effect of CO2, we performed a
fourth ensemble of integrations with CO2 concen-
trations fixed at 1955 levels. And finally, to test the
linear additivity of the response to CO2 and ODS,
we performed a fifth ensemble of integrations with
both CO2 andODS concentrations fixed at their 1955
levels.

Focusing on the differences between the ALL
ensemble and the fixed-forcing ensembles allows
us to isolate the effect of the individual forcings on
the Arctic climate. This leave-one-out approach fol-
lows Polvani et al (2011) and many others, including
the recent studies contrasting the effects of aerosols
and GHGs in the CESM Large Ensemble (Deng et al
2020, Deser et al 2020, England 2021). In the fol-
lowing analyses, we refer to the difference between
the ALL and the fixed-ODS ensembles as ODS, as it
isolates the impacts of ODS. Similarly CO2 stands
for the difference between the ALL and fixed-CO2

ensembles, as it isolates the impacts of CO2. Again,
CO2 and ODS indicates the difference between the
ALL and fixed-CO2-and-ODS ensembles. Finally,
the impacts of stratospheric ozone are quanti-
fied as the difference between the fixed-ODS and
fixed-ODS-and-O3 ensembles, and is denoted as
Strat-O3.

To investigate the physical processes producing
AA, we perform a feedback analysis based on the top-
of-atmosphere (TOA) energy budget over the Arctic
domain,
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∆R+∆F−∆H= 0, (1)

where∆R denotes the change in net downward radi-
ation at the TOA, ∆F the change in horizontal con-
vergence of atmospheric and oceanic energy trans-
ports, and ∆H the change in the ocean heat storage
(derived from ocean potential temperatures) in the
Arctic, assuming that ocean uptake dominates and
contributions from the atmosphere, land, and cryo-
sphere are negligible due to their relatively small heat
capacities. We estimate∆F as the difference between
∆H and ∆R (with the latter calculated from model
output TOA radiative fluxes).∆R can be decomposed
as follows:

∆R=∆RF +∆RPlanck +∆RLR +∆RAL

+∆RWV +∆RCL, (2)

where∆RF denotes the stratosphere-adjusted radiat-
ive forcing calculated with the Parallel Offline Radi-
ative Transfer (PORT) model assuming fixed dynam-
ical heating (Conley et al 2013), ∆RPlanck the Planck
feedback due to vertically uniform warming, ∆RLR

the lapse-rate feedback due to vertically non-uniform
warming, ∆RAL the surface albedo feedback, ∆RWV

the water vapor feedback, and ∆RCL the cloud feed-
back (calculated using the adjusted cloud radiative
effect method of Soden et al (2008)). For the Planck
feedback, we show the deviation from the global-
mean value, and we refer to this as Planck’. The
residual (or error) in our decomposition of ∆R is
estimated as the difference between ∆R calculated
directly frommodel output TOA radiative fluxes, and
∆R calculated from equation (2). We use the Com-
munity AtmosphereModel version 5 radiative kernels
(Pendergrass et al 2018) to compute the feedbacks in
equation (2).

We focus on the annual and Arctic-mean energy
budget differences between two 10-year time peri-
ods, 1996–2005 and 1955–1964; this methods yields
results that are very similar to the those obtained
from linear trend analysis (discussed in Polvani et al
(2020)). We divide each component of equation (2)
by the change in Arctic-mean surface air temperature
(∆Ts) to derive feedback parameters.

To test the statistical significance of trend differ-
ences, we perform a two-sided Student’s t-test with
the null hypothesis that the difference of 10-member
ensemble-mean trends is zero. If the null hypothesis
can be rejected with 10% significance level (i.e. the
p-value less than 0.10), we refer to the ensemble-
mean trends as statistically different or separable.
To test the robustness of our results and minimize
the effect of internal variability, we employ a boot-
strapping technique (Pedregosa et al 2011) and ran-
domly sample twenty members from each ensemble
of integrations 10 000 times with replacement (res-
ults are not sensitive to how many members are
selected). We average over each of the re-sampled

members to obtain distributions of 10 000 ensemble
means.

We also look at∆Ts from the observational large-
ensemble dataset provided by McKinnon and Deser
(2018). This dataset informs us about the effects of
internal variability, and also allows us to determine
whether ourmodel simulations are in line with obser-
vations.

In the analysis that follows, Arctic-mean values
refer to the area-weighted average for the variable
of interest over the Arctic domain, i.e. 60◦N–90◦N.
Similarly, global-mean (tropical-mean) values denote
the area-weighted average over the global (tropical)
domain, i.e. 90◦S–90◦N (30◦S–30◦N).

3. Results

We begin by comparing the forced annual-mean
Arctic warming and September sea-ice loss in ODS
to those in ALL and CO2 via examining the spa-
tial distributions of their ensemble-mean surface air
temperature (SAT) and sea-ice concentration (SIC)
trends (figure 1). The SAT trends in ALL are com-
parable to those in CO2, but with greater warm-
ing in the Laptev-East Siberian Seas, Barents-Kara
Seas, and East Greenland Sea (c.f., figures 1(a) and
b). Correspondingly, large negative September SIC
trends appear in these regions in ALL and CO2
(c.f., figures 1(e) and f). In contrast, ODS shows the
strongest warming trends in the Laptev-East Siberian
Seas, accompanied by large sea-ice loss in that region
(figures 1(c) and g).

To quantitatively compare the 1955–2005 CO2
and ODS trends over the Arctic, we plot the Arctic-
mean annual-mean SAT trends for the ensemble
averages, and for the individual ensemble mem-
bers, in box-and-whisker plots in figure 2(a).
Let us start by comparing the ALL and CO2
ensembles. The ensemble-mean SAT trend in ALL
is 0.32 K · decade−1, which is only slightly lar-
ger than the ensemble-mean trend for CO2, of
0.27 K · decade−1. Note the considerable overlap
between the ALL and CO2 SAT trend distribu-
tions derived from 10 000 re-samples from boot-
strapping (c.f., black and magenta distributions in
figure 2(b). In fact, the ALL trends are statistically
inseparable from the CO2 ones. Keeping in mind
that the CO2 trends do not include the effect of
aerosol forcings which is, however, present in the
ALL trends, we conclude that—in this model, over
the Arctic—the aerosol forcing is greatly offset by
the presence of the other (non-CO2) greenhouse
gases. This is also seen in the September sea-ice
extent (SIE) trends, which are only slightly larger
in ALL than in CO2, but with no statistically signi-
ficant difference (figure 2(c)). For completeness, the
entire seasonal evolution of the Arctic-mean SAT and
SIE trends is shown in figure S1 (available online
at stacks.iop.org/ERL/17/024010/mmedia): it shows
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Figure 1. Spatial distributions of annual-mean 1955–2005 SAT trends for (a) ALL, (b) CO2, (c) ODS, and (d) Strat-O3. (e)–(h): as
in (a)–(d), but for September SIC trends. Hatched regions indicate where trends are significant at the 5% significance level using a
Student’s t-test. The trend shown here is first calculated for each member in ALL and fixed-forcing runs separately, then taking
their difference, and finally averaging over ensemble members.

strong warming trends during late autumn and sub-
stantial Arctic sea-ice loss trends from August to
October for both ensembles.

Let us now turn our attention to ODS, which
contributed the largest non-CO2 increase in radiat-
ive forcing over the period 1955–2005 Myhre et al
(2013), see, for instance, the orange bars in figure 8.6d
of. As one can see in figure 2, the ODS ensemble-
mean Arctic SAT trend is 0.14 K · decade−1, which
is slightly more than half (52 ± 35%, uncertainty
is estimated by the full range of maximum and
minimum difference between ODS and CO2) the
CO2 ensemble-mean value. This difference in Arc-
tic SAT trend is statistically significant at 10% level.
A similarly large response to ODS is found for sea
ice: the September SIE ensemble-mean trend for
ODS is −0.16× 106 · km2 · decade−1, which again is
more than half of the CO2 ensemble-mean value of
−0.27× 106 · km2 · decade−1. This is an unexpected
result, as the radiative forcing of ODS over this period
is only one third of the CO2 forcing Polvani et al
(2020), see figure 1 in: the radiative forcing of ODS
accounts for 28% of the CO2 forcing over the Arc-
tic domain based on our PORT model simulations,
slightly larger than the estimate from Polvani et al
(2020). Such discrepancy could be further under-
stood if the effective radiative forcings of ODS and
CO2 are estimated. Clearly some enhanced climate
feedbacks must at work under ODS forcing.

Before examining those, however, we ask whether
the response to CO2 and ODS, the two largest
well-mixed greenhouse-gas forcings over the half-
century 1955–2005, is linearly additive. The ques-
tion is answered in figure 2(a) (c.f., brown and
green clusters). In our 10-member ensembles, we
see no statistically significant difference between the
CO2&ODS trends, in which both CO2 and ODS
increase in the model integrations over that period,
and the sum of the CO2 and ODS trends (denoted
CO2+ODS), in which CO2 and ODS alone increase
in the model simulations, respectively. This linear
additivity result holds for both annual-mean SAT and
September SIE (and annual SIE shown in figure S2).

Since the increase of ODS is accompanied by the
destruction of ozone, we also explore the potential
impact of stratospheric ozone depletion over the Arc-
tic. Much work has been done on the climate impacts
of ozone depletion: while capable of reaching into
the subtropics e.g., Kang et al (2011) those impacts
have been largely confined to the Southern Hemi-
sphere Previdi and Polvani (2014), for a comprehens-
ive review, see, although a few studies have suggested
a possible impact on the Northern Hemispheric cir-
culation (Smith and Polvani 2014, Calvo et al 2015).
Over the Arctic, however, our model simulations (see
the Strat-O3 results in figures 1 and 2) show that
the impact of stratospheric ozone on SAT and SIE
is negligible (with trends of 0.02 K · decade−1 and
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Figure 2. (a) Arctic-mean annual SAT trends for ALL, CO2, ODS, CO2&ODS, CO2+ODS (sum of CO2 and ODS), and Strat-O3.
The large dots show the ensemble-mean values, and the small dots the individual members. The whiskers show the ranges of
10-member ensembles, and the orange horizontal lines their median values. (b) Probability density functions for 10 000
re-sampled annual Arctic-mean SAT trends for ALL, CO2, ODS, CO2&ODS, CO2+ODS (sum of CO2 and ODS), and Strat-O3.
(c) and (d): as in (a) and (b), but for Arctic September SIE trends.

−0.002× 106 km2 · decade−1, respectively, which are
not significantly different from zero). This should
not be surprising, as the radiative forcing from ozone
depletion is small even over Antarctica (Chiodo et al
2017), where stratospheric ozone loss is much larger
than over the Arctic.

Let us now turn to AA, and specifically to con-
trasting AA caused by ODS to AA caused by CO2,
which is the main goal of this study. We start
by examining the Arctic-mean SAT trends against
global-mean trends for ODS and CO2 (figure 3(a)).
First, note that the SAT trends forCO2 are larger than
for ODS, for both Arctic and global means; this is
expected because the radiative forcing from CO2 is
larger than the one from ODS during the 1955–2005
time period Polvani et al (2020), see figure 1 in. The
ensemble-mean global SAT trend forCO2 (big red dot
in figure 3(a) is 2.67 times larger than that for ODS
(big blue dot in figure 3(a). However, for Arctic SAT
trends the former is only 1.92 times larger than the
letter, suggesting a weaker Arctic warming forced by
CO2 than by ODS with respect to global warming—a
manifestation of AA signature. Second, AA occurs in
bothCO2 andODS, and is clearly visible from the fact
that the ensemble means (large red and blue dots) are
found above the one-to-one line (in dashed gray) that
marks where Arctic and global warming trends are of

equal magnitude. Third, we estimate the strength of
AA from the linear least-squares slope of Arctic SAT
trends against global SAT trends using the 10 000 re-
sampled ensembles. We find that theODS slope (3.59
± 0.05, solid blue line) is significantly larger than the
CO2 slope (2.73± 0.06, solid red line), indicating that
ODS causes a stronger AA than CO2.

To facilitate the quantitative comparison of AA in
theODS and CO2 ensembles, we define the AA factor
(AAF) as the ratio of the Arctic-mean SAT trend to
the global-mean SAT trend. These AAFs for eachODS
and CO2 member, and for their ensemble-mean val-
ues, are graphically illustrated with box-and-whisker
plots in figure 3(b). Consistent with the regression
analysis in figure 3(a), the ODS ensemble-mean AAF
(3.82) is larger than the CO2 ensemble-mean AAF
(2.64) by a factor of 1.44. They are also statistically
separable. We also show identical diagnostics for ALL
(black lines, dots, and cluster in figures 3(a) and b):
these are similar to those ofCO2, as expected. In addi-
tion, the AAF for the ensemble-mean of observational
large ensemble (2.62, green dots) is similar to those
for ALL and CO2, suggesting the modeled AAFs are
in line with the observational estimate. The above res-
ults clearly indicate that AA from ODS is larger than
AA from CO2, and suggest that ODS are more effect-
ive GHGs than CO2 in terms of generating AA.
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Figure 3. (a) The Arctic-mean annual SAT trends vs. the global-mean annual SAT trends, for ODS (blue cluster), CO2 (red
cluster), and ALL (black cluster). The big dots show the ensemble-mean values, and the small dots the individual members. The
solid and dashed lines are the linear least-squares fits and the corresponding 95% confidence interval range from the 10 000
re-samples. The dashed gray line has one-to-one slope. (b) Box-and-whisker plots for the Arctic amplification factor (AAF), with
the whiskers showing the ranges of 10-member ensembles, and the orange horizontal lines showing the median values for ALL,
CO2, and ODS. The big dots are the ensemble-mean values, the smaller dots the individual members. In both panels, the gray,
magenta and cyan lighter dots show the 10 000 re-samples. The green dots present the results obtained from observational large
ensemble.

Figure 4. The ODSminus CO2 Arctic vs. tropical annual feedback parameters for Planck’ (golden), lapse-rate (green), surface
albedo (dark red), water vapor (dark blue), net cloud (longwave plus shortwave, cyan), and convergence of atmospheric and
oceanic heat transports (black), as well as forcing (dark brown) and residual (gray). The big dots denote the ensemble-mean
values and the dots with light colors the values of 10 000 re-samples. The dashed gray line has one-to-one slope.

Finally, we elucidate the mechanisms leading to a
stronger AA in ODS than in CO2. In ODS and CO2
individually, AA can be explained by more positive
Planck’, surface albedo, lapse-rate, and cloud feed-
backs over the Arctic compared to the tropics (figures
S3a and S3b). We find that differences in these same
feedbacks between ODS and CO2 (figure 4) explains
the stronger AA from ODS than from CO2 forcing.
In contrast, differences in radiative forcing, water

vapor feedback, and energy transport response act to
oppose the stronger AA in ODS (as evidenced by the
fact that these terms lie below the one-to-one line in
figure 4). It is worth noting that the ODS and CO2
cloud feedback parameters are nearly identical in the
Arctic, but the former is more negative than the latter
in the tropics. We are currently investigating the reas-
ons for these feedback differences between ODS and
CO2—including the seasonality of those differences
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and of AA—and we plan to report on this in a future
paper.

4. Summary and discussion

Building on the recent study of Polvani et al (2020),
who highlighted the importance of ODS in warm-
ing the Arctic during the second half of the 20th cen-
tury (when ODS became regulated by the Montreal
Protocol), we have here further explored how ODS
compare to CO2 in terms of their Arctic impact
with new large-ensemble simulations conducted.
Using ensembles of global climate model integrations
designed to isolate the respective impacts of ODS and
CO2 over the period 1955–2005, we have found that
the Arctic warming and September sea-ice melting
from ODS are slightly more than half of their CO2

counterparts. This, we have shown, is due to the fact
that AA caused by ODS is larger than the one caused
by CO2 (the AAF for ODS is 1.44 times larger than
for CO2). And, finally, we have determined that dif-
ferences in Planck’, surface albedo, lapse-rate, and
cloud feedbacks between ODS and CO2 can explain
the stronger AA in response to ODS forcing. It will
be important to validate these results with different
climate models, and with larger ensembles, although
Arctic climate responses consistent with ours have
been reported in a recent study using a different cli-
mate model (Goyal et al 2019).

In conclusion, it is important to appreciate that
while the large global warming potential of ODS has
been known since the mid-seventies (Ramanathan
1975), it is only in the last decade that we have started
to appreciate the profound and broad climate impacts
of these gases. Well beyond causing the ozone hole
over Antarctica, it is now clear that ODS have sub-
stantially contributed to global warming and to Arc-
tic sea-ice loss. These recent findings confirm that the
Montreal Protocol, originally signed to protect the
stratospheric ozone layer, is in reality a major climate
mitigation treaty as ODS affect the entire planet. The
continued monitoring of ODS, therefore, is not only
beneficial for the ozone hole healing in the Southern
Hemisphere, but also amatter of great importance for
Arctic climate change.
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archive of the NSF Office of Polar Programs
(https://arcticdata.io/).
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