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Abstract Global climate models that do not include interactive middle atmosphere chemistry, such as most
of those contributing to the Coupled Model Intercomparison Project Phase 5, typically specify stratospheric
ozone using monthly mean, zonal mean values and linearly interpolate to the time resolution of the model.
We show that this method leads to significant biases in the simulated climate of the southern hemisphere (SH)
over the late twentieth century. Previous studies have attributed similar biases in simulated SH climate change
to the effect of the spatial smoothing of the specified ozone, i.e., to using zonal mean concentrations. We
here show that the bias in climate trends due to undersampling of the rapid temporal changes in ozone during
the seasonal evolution of the Antarctic ozone hole is considerable and reaches all the way into the troposphere.
Our results suggest that the bias can be substantially reduced by specifying daily ozone concentrations.

1. Introduction

Stratospheric ozone depletion is a major driver of changes in the southern hemisphere (SH) climate during
the latter half of the twentieth century [Thompson and Solomon, 2002; Gillett and Thompson, 2003; Perlwitz
et al., 2008; Son et al., 2008, 2009, 2010; Polvani et al., 2011a, 2011b; Mclandress et al., 2011; Lee and Feldstein,
2013]. Specifically, both observational [Lee and Feldstein, 2013] and modeling [Polvani et al., 2011a, 2011b]
studies find that SH stratospheric ozone depletion during the late twentieth century has contributed upward
of twice as much as the increase in greenhouse gases to the poleward shift of the SH westerly jet and the
associated changes in SH precipitation in austral summer [Kang et al., 2011].

A good number of the climate models that contributed to the Coupled Model Intercomparison Project Phase 5
(CMIP5) now include a well-resolved stratospheric circulation [Charlton-Perez et al., 2013], and some include
interactive stratospheric chemistry [Eyring et al., 2013]. However, the computational burden of coupled
chemistry calculations can be prohibitive for long climate integrations, especially with increasing horizontal
resolution; therefore, most models still specify the concentration of ozone, whence shortwave heating is
computed [Taylor et al., 2012]. In such models, accurately representing the ozone hole is essential for capturing
changes in SH climate over the late twentieth century and into the future [Calvo et al., 2012; Young et al., 2013].

Previous studies [Crook et al., 2008; Gillett et al., 2009; Waugh et al., 2009] have identified significant
differences in atmospheric circulation between climate models forced with specified monthly mean, zonal
mean ozone, as was used in CMIP5 [Cionni et al., 2011], and climate models with interactive stratospheric
ozone chemistry. These studies show a weaker and warmer SH polar vortex whenmonthly mean, zonal mean
ozone is specified and attribute this difference to the spatial smoothing associated with creating the zonal
mean. However, these studies did not address the impact of specifying monthly mean ozone.

We here show that coarse (i.e., monthly) temporal smoothing leads to significant underestimate of the
magnitude of ozone depletion. This bias is directly attributable to the linear time interpolation between the
specified monthly values, which results in ozone holes that are not as deep as observed. We find that
simulations with stratospheric ozone specified at monthly resolution (and interpolated linearly between
those values) significantly underestimate the late twentieth century changes in climate relative to simulations
in which stratospheric ozone is specified at daily resolution. The differences reach all the way into the
troposphere as evident in the magnitude of the poleward shift in near-surface zonal winds and precipitation
over the Southern Ocean.
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2. Method

In this study we utilize a model that can be configured with and without interactive chemistry to complete three
ensembles of simulations of six members each: one ensemble uses fully interactive chemistry to calculate ozone,
while the other two ensembles use specified ozone concentrations. We then compare the change in climate,
over the second half of the twentieth century, of the two ensembles that used specified ozone concentrations
against the change in climate of the ensemble that utilized fully interactive chemistry. We first describe the two
configurations of the model and then describe the specifics of each of the three ensembles of simulations.

2.1. Model Configurations

For simulations with interactive chemistry, we utilize the Whole Atmosphere Community Climate Model, a
component of the National Center for Atmospheric Research (NCAR) Community Earth System Model,
referred to as CESM1(WACCM) or simply WACCM [Marsh et al., 2013; Hurrell et al., 2013]. WACCM has 66
vertical levels, with the upper boundary at approximately 140 km and a horizontal resolution of 1.9°×2.5°. WACCM
includes parameterized gravity waves as well as appropriate treatment of shortwave heating and nonlocal
thermodynamic equilibrium radiative transfer in the mesosphere and above. Most importantly, WACCM includes
a fully interactive representation of middle atmosphere chemistry that allows for a self-consistent simulation of
the stratospheric ozone hole and its effect on tropospheric climate. We also point out that, as configured here,
WACCM is the atmosphere component of CESM1 and, for the simulations done in this study, is coupled to an
interactive ocean model, land surface model, and sea ice model [Marsh et al., 2013; Hurrell et al., 2013].

For simulations without interactive chemistry, the “specified chemistry” configuration of WACCM is utilized
[Smith et al., 2014]. CESM1(SC-WACCM), or simply SC-WACCM, is completely analogous to CESM1(WACCM),
including coupling to the ocean, land-surface, and sea ice models, except that nearly all interactive chemistry
has been removed. In SC-WACCM, the interactive chemistry of WACCM is essentially replaced by specifying
the concentrations of radiatively active constituents, such as CO2 and ozone, or calculating constituent
removal via simple loss mechanisms [Smith et al., 2014]. The concentrations or specified values of these
species are derived from existing WACCM simulations with interactive chemistry. As in WACCM, the time step
of SC-WACCM is 30min. When the concentrations of radiatively active constituents are specified at coarser
temporal resolutions, SC-WACCM determines the value of the constituent at the time step of the model by
linearly interpolating between the closest specified values. In time-slice simulations under preindustrial
conditions, the simulated tropospheric climate of SC-WACCM, using monthly mean, zonal mean specified
constituents, has been found to be indistinguishable from that of WACCM [Smith et al., 2014]. This is
unsurprising as there are no significant variations in the specified constituents under preindustrial conditions
that would be significantly impacted by temporal or spatial smoothing.

2.2. Simulations

The baseline ensemble of simulations consists of six historical integrations of the fully coupled
atmosphere-ocean-land configuration of CESM1(WACCM) with interactive middle atmosphere chemistry;
these simulations are analogous to those carried out for CMIP5 and are fully described by Marsh et al.
[2013]. The six members start in 1955, with six different initial conditions, using a method similar to that of
Deser et al. [2010], and continue until 2005. Concentrations of the ozone-depleting anthropogenic
chlorofluorocarbons CFC-11 and CFC-12 are essentially zero before 1960 and increase over the period of
this study to 254 parts per trillion by volume (pptv) and 539 pptv, respectively.

To examine the impact of specifying monthly mean ozone values versus specifying ozone at a higher
temporal resolution, two SC-WACCM ensembles of six members each were created for comparison to the
WACCM ensemble using the same initial conditions as used in the six WACCM simulations. In the first
SC-WACCM ensemble, monthly mean, zonal mean stratospheric ozone concentrations were specified, as might
be done in a typical CMIP5 model without interactive chemistry, such as NCAR’s Community Climate System
Model version 4 [Gent et al., 2011]. The ozone distribution used on each day is calculated by interpolating
between monthly mean values specified at the middle of each month. These simulations will be referred to as
SC-WACCM(monthly). In the second SC-WACCM ensemble, the same model setup was used, except that
stratospheric ozone was specified as daily mean, zonal mean values. Those simulations will be referred to as
SC-WACCM(daily). The specified monthly and daily ozone concentrations are the ensemble mean values from
the WACCM (interactive chemistry) ensemble. All other specified constituents in both SC-WACCM ensembles
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are the zonal mean, monthly mean
values of the WACCM ensemble. Note
that all simulations in the SC-WACCM
ensembles cover the exact same period
as the WACCM ensemble (1955–2005).

2.3. Analysis Details

In Figure 1, we examine the differences
in ensemble mean ozone values as
simulated by WACCM and specified in the
SC-WACCM ensembles. In Figures 2, 3, and
4, the ensemble median was chosen as
the best measure of the central tendency
of each ensemble due to the significant
variability displayed by individual
members. In all figures, dots denote the
regions of insignificance. In all cases,
significance was tested using a Wilcoxon
rank sum test of 90 (i.e., 15 years of
individual monthly mean values from six
ensemble members) monthly values at
the 95% level [Hollander and Wolfe, 1999].

3. Results

We first compare the monthly mean and
daily mean ozone concentrations from
the two SC-WACCM simulations to the

interactively calculated ozone in WACCM when there is a strong Antarctic ozone hole (1990–2005). We then
examine the impact of the biases introduced by specifying monthly mean ozone on certain aspects of SH
climate change over the latter half of the twentieth century.

3.1. Effect of Temporal Smoothing on the Antarctic Ozone Hole

Figure1adepictstheseasonalcycleofozoneat52hPaaveragedover thesouthernpolarcap(70–90°S),asspecifiedfor
theSC-WACCMintegrations.TwocurvesshowthedailymeanozoneinSC-WACCM,averagedover theperiod1990to
2005: red for SC-WACCM(daily) and black for SC-WACCM(monthly). The dailymean ozone in SC-WACCM(daily) is
nearly identical to the dailymean ozone ofWACCM (not shown since they are indistinguishable), whereas the daily
meanozoneof SC-WACCM(monthly) is significantlydifferent. This is directly due to the linear temporal interpolation
preformed by SC-WACCMon the specified ozone concentrations. The comparison of the black and red curves in
Figure1ashowsthat linear interpolationbetweenthespecifiedmonthlyvaluesdoesnotcapturetherapidchanges in
ozoneconcentrationduringtheozoneholeseason.ThiscausestheconcentrationofozoneinSC-WACCM(monthly)to
be too low at the beginning and endof the ozone hole season and too high duringOctober andNovemberwhen
ozone is at itsminimum.

The horizontal bars in Figure 1a show themonthly means of the daily curves: red bars for SC-WACCM(daily) and
black bars for SC-WACCM(monthly). It is clear that the process of interpolation used in SC-WACCM(monthly)
does not preserve the WACCMmonthly mean during the season of rapid changes in ozone (e.g., compare the
black and red bars during the ozone hole season).

The percentage differences between the black (monthly) and red (daily) curves in Figure 1a are shown by the
red curve Figure 1b together with its monthly means (red bars). During the October ozone minimum, the
differences are up to 27%. We note that the large short-term variability in the red curve of Figure 1b,
especially in October, November, and December, is an artifact of specifying the ozone at the midpoint of each
month and does not represent interannual variability.

In contrast to the late twentieth century, the pre-ozone-hole period is characterized by small month-to-month
changes in ozone, and consequently, biases due to interpolation between monthly means are small. This is also
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Figure 1. (a) Ensemble mean ozone volume mixing ratio at 52 hPa
averaged over the southern polar cap (70–90°S) from 1960 to 1975
in blue and green and from 1990 to 2005 in red and black. The hori-
zontal bars are themonthly mean values, and the curves are the daily mean
values. Black and green denote SC-WACCM(monthly), while SC-WACCM
(daily) is shown in red and blue. (b) Ensemble mean percent difference in
ozone mixing ratio between SC-WACCM(daily) and SC-WACCM(monthly).
The curves are the daily mean differences, and the horizontal bars are the
monthly mean differences. Red denotes the difference for the 1990–2005
mean, and blue denotes the difference for the 1960–1975 mean.
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illustrated in Figure 1a,which shows the 1960–1975daily andmonthlymeanozone values fromSC-WACCM(monthly)
in green and SC-WACCM(daily) in blue. Because the temporal changes in ozone are much smaller in the
pre-ozone-hole period, linear interpolation between specified monthly values sufficiently captures the
variability of ozone. The percent difference between the pre-ozone-hole period values is quantified in blue in
Figure 1b, where the largest differences are no greater than 3%.

We now show that the interpolation biases have a significant effect on stratospheric heating rates and
temperatures. Figure 2 displays the ensemble median monthly mean differences in polar cap ozone
concentrations, shortwave heating rates, and temperature, as functions of pressure, between the WACCM
ensemble and each of the two SC-WACCM ensembles. We first focus on the differences betweenWACCM and
SC-WACCM(monthly) in Figures 2a, 2c, and 2e (Left column of Figure 2). In Figure 2a, themonthly mean ozone
volume mixing ratio difference between WACCM and SC-WACCM(monthly) shows a significant tripole
pattern between 100 hPa and 10 hPa from June to January (i.e., high in July, low in October, and high again in
December, see also the red curve in Figure 1b). At the time of the ozone hole minimum in October,
SC-WACCM(monthly) has 245 ppb more ozone than WACCM at 30 hPa.

Figure 2. Comparison of the 1990–2005 ensemblemedian,monthlymean differences between (a, c, and e)WACCMand SC-WACCM(monthly) andWACCMand (b, d, and f)
SC-WACCM(daily). Figures 2a and 2b show the southern polar cap (70–90°S) ozone volume mixing ratio differences (ppbv), Figures 2c and 2d show the resulting
differences in shortwave heating (K d�1), and Figures 2e and 2f show the subsequent differences in temperature (K). The dotted regions are statistically insignificant at
the 95% level as determined by a Wilcoxon rank sum test.
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The resulting differences in shortwave heating are shown in Figure 2c. The tripole pattern seen in Figure 2a
gives rise to a dipole pattern in Figure 2c because shortwave heating depends on both the concentration of
ozone and incoming solar radiation, which does not occur during the initial overestimate of ozone in austral
winter (June-July-August). The temperature differences that follow are shown in Figure 2e. Consistent with
the bias in shortwave heating, WACCM is colder than SC-WACCM(monthly) throughout the lower stratosphere.
Notably, the temperature bias reaches a maximum of �3 K at 100hPa in December, which is lower and later
than the center of the ozone hole. Figure 2e is directly comparable to Figure 1b ofWaugh et al. [2009] and
validates the result of that study, which shows similar temperature differences between a simulation with
interactive ozone chemistry and a simulation with specified monthly mean, zonal mean ozone during the
ozone hole period.

Figures 2b, 2d, and 2f compare WACCM to SC-WACCM(daily) (Right column of Figure 2). Figure 2b shows that
specifying daily ozone values leads to no significant biases in ozone during the ozone hole period. Thus, the
dipole pattern in Figure 2a appears to be primarily attributable to temporal smoothing of specified ozone
rather than the use of zonal means. Because of the insignificant differences in ozone, Figure 2d shows only
small and spatially incoherent differences in the shortwave heating rates. The resulting differences in
monthly mean temperature are seen in Figure 2f. Unlike SC-WACCM(monthly), SC-WACCM(daily) shows only
small and mostly insignificant differences in temperature compared to WACCM.

The exceptions to this are during June and July between 50hPa and 10hPa when WACCM is ~0.5 K colder
and December through February between 30hPa and 10hPa when WACCM is ~1K warmer. These differences
are similar to those seen in the same regions of SC-WACCM(monthly), Figure 2e, and are insignificant compared
to the bias in the lower stratosphere from October to January in SC-WACCM(monthly). Because these
differences are consistent between the two SC-WACCM ensembles, they may be attributable to the effect of
spatial smoothing imposed by specifying the zonal mean values.

Figure 2f shows the same result as Figure 3c of Gillett et al. [2009], where an interactive chemistry simulation
was compared to a simulation with zonal mean ozone specified at every model time step. This suggests that
zonal asymmetries must also play a role in the temperature differences between interactive chemistry
simulations and specified chemistry simulations. However, the comparison of Figures 2e and 2f suggest that
at least half of the monthly mean temperature differences between WACCM and SC-WACCM(monthly) may
be attributed to coarse temporal representation of the specified ozone in SC-WACCM(monthly) if we
presume that the effects are additive.

3.2. Impacts on Tropospheric Climate

The significant differences in stratospheric temperatures between WACCM and SC-WACCM(monthly) occur
during the ozone hole season. As a consequence of these differences, significant differences are found at the
end of the twentieth century when comparing the simulated changes in the summertime SH circulation and
surface climate between the two ensembles. Differences in the austral summertime (December-January-
February (DJF)) temperatures between SC-WACCM(monthly) and WACCM (Figure 2e) are induced by
differences in the SH DJF zonal mean winds from the stratosphere down to the surface. To highlight these
differences across simulation ensembles, we now focus on decadal average changes in zonal wind for
each ensemble.

Figure 3 compares the zonal wind differences between the periods 1960–1975 and 1990–2005, in austral
summer (DJF), in WACCM (Figure 3a), SC-WACCM(monthly) (Figure 3b), and SC-WACCM(daily) (Figure 3c).
In all three panels, the black contour lines show the ensemble’s climatology from 1960 to 1975, and the
shading shows the difference between the ensemble medians of 1960–1975 and 1990–2005. Figure 3 is
directly comparable to Figure 12 ofMarsh et al. [2013], and the WACCM ensemble completed for this study is
indistinguishable from that of Marsh et al. [2013].

The comparison of WACCM to SC-WACCM(monthly) shows that the change in the stratospheric polar vortex
over this period is considerably smaller when the monthly mean ozone is specified. In WACCM, the peak
difference in the jet at 65°S and 30 hPa is 12.5m s�1, while in SC-WACCM(monthly), the peak change is only
11.1m s�1; these differences are statistically significant. Note that in SC-WACCM(daily), Figure 3c, the jet
change is nearly identical to WACCMwith a peak change of 12.3m s�1. Thus, the peak changes in zonal winds
between the period before and during the ozone hole shown in Figure 3 suggest that temporal smoothing
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may account for as much as 85% of the difference in stratospheric zonal mean zonal wind between
WACCM and SC-WACCM(monthly), assuming that the effects are additive.

Moreover, in the troposphere, all three ensembles show a statistically significant increase of winds on the
poleward side of the climatological jet and a decrease on the equatorward side; this pattern is often referred

Figure 3. SH DJF ensemble median zonal wind for (a) WACCM and (b) SC-WACCM(monthly) and (c) SC-WACCM(daily). The
black contour lines are the 1960–1975 climatology drawn every 5m/s. The shading shows the difference between the
1990–2005 and 1960–1975 medians of each ensemble. The dotted regions are statistically insignificant at the 95% level.
The white contour marks the 1.25m/s level.
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as a positive phase of the Southern Annular Mode. The tropospheric wind shifts are highlighted by the white
contour, which marks the 1.25m/s level in each plot. In WACCM and SC-WACCM(daily), this contour clearly
reaches the surface, whereas in SC-WACCM(monthly), it does not.

We further examine the bias from using the monthly specified ozone on SH surface climate change by
looking at the change in DJF near-surface zonal wind and precipitation between 1960–1975 and 1990–2005
in each of the three ensembles (Figures 4a and 4b, solid lines). For reference, the dashed lines in Figure 4
show the 1960–1975 climatology for each ensemble. The key points of Figure 4 are that SC-WACCM(monthly)
(red) only displays approximately three quarters of the peak change in the near-surface zonal wind compared
to WACCM (blue) between 75°S and 65°S and approximately half the largest decrease in precipitation near
50°S. In contrast, SC-WACCM(daily) (green) captures a similar change to WACCM. Hence, the specification of
monthly mean ozone, which is customary in current generation climate models, has profound consequences
on the trends in surface winds and precipitation during the ozone hole period.

4. Discussion and Conclusions

In this study we have examined the dependence of SH climate trends on the frequency at which stratospheric
ozone is specified. Specifically, we have examined the impact of using coarse temporal resolution to
represent the seasonal cycle in stratospheric ozone. By specifying the monthly mean values and linearly
interpolating between these values to the time step of the model, a distinct tripole bias in the ozone
concentration is created. The bias is only significant when month-to-month changes in ozone are large, as
happens in SH spring during the latter decades of the twentieth century, when the ozone hole develops.
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Previous to the development of the Antarctic ozone hole, the impact of using the linearly interpolated
monthly mean ozone concentrations is negligible. The bias introduced by linear interpolation is shown to
have a significant impact on SH stratospheric temperatures during the ozone hole period and, consequently,
on SH climate. Specifically, we show, by comparing WACCM with fully interactive chemistry to SC-WACCM
with monthly and daily specified ozone, that specifying the daily mean ozone significantly reduces the
differences in SH zonal mean wind and precipitation with respect to WACCM. This result is especially
important for upcoming and future CMIP projects, which will need to define how models without interactive
middle atmosphere chemistry prescribe the ozone concentrations [Meehl et al., 2014].

The results of this study are consistent with previous studies that examine the impact of using specified ozone
values in coupled climate model simulations [Crook et al., 2008; Gillett et al., 2009; Waugh et al., 2009]. In
particular, the differences in the southern polar cap monthly mean temperature and the changes in the SH
zonal-mean winds between fully interactive WACCM and SC-WACCM using linearly interpolated monthly mean
ozone are directly comparable inmagnitude to the results ofWaugh et al. [2009], which examined changes over
the late twentieth century. In Waugh et al. [2009], the differences between simulations with interactive
chemistry and those with monthly mean, zonal mean specified ozone values were solely attributed to the
impact of specifying a zonal mean via the mechanism described by Crook et al. [2008]. Here we show that the
impact of specifying ozone at a monthly resolution also accounts for a substantial fraction of those differences.

Similarly in Figure 2, the shortwave heating and temperature differences betweenWACCM and SC-WACCM(daily)
seen in Figures 2d and 2f, respectively, showuniquely the effects of the nonzonality of the ozone concentrations in
WACCM. The key point of Figure 2 is that Figures 2b, 2d, and 2f show much smaller differences than those in
Figures 2a, 2c, and 2e, indicating that the errors introduced by specifying the zonal mean ozone are relatively small
compared to the errors associated with interpolating ozone from monthly mean values.

Here we have shown that by simply increasing the temporal resolution of the specified ozone values from
monthly to daily means, a coupled climate model without interactive chemistry captures similar magnitudes
of decadal change as those simulated by a fully interactive model.

Although higher temporal resolution is easy to achieve with the use of model output, current observational
data sets [e.g., Cionni et al., 2011] are limited to monthly mean values. One possible solution would be to
employ a method that is frequently used to ensure that the linear time interpolation between specified
monthly mean sea surface temperature and sea ice concentrations maintains the correct monthly mean values
[Taylor et al., 2000]. This method is commonly referred to as “diddling” and simply adjusts the specifiedmonthly
mean such that the linear interpolation operator returns the desired monthly mean value. As part of this
study, an ensemble of three SC-WACCM simulations was also completed exactly as the SC-WACCM(monthly)
except that the monthly mean ozone values were diddled. From this ensemble, we found that diddling, as
designed, does reduce the error in monthly mean ozone values compared to WACCM. Yet diddling did not
improve the simulated trends in the zonal mean wind or precipitation fields because diddling, by
definition, does not reduce the differences between the daily mean ozone values. Other methods such as
polynomial interpolation may be needed to more accurately represent temporal variability in ozone, if
ozone databases for future model intercomparison projects are to be based primarily on observational
information alone.
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